2 resultados para Wavelet transform analysis
em Helda - Digital Repository of University of Helsinki
Resumo:
The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.
Resumo:
Technical or contaminated ethanol products are sometimes ingested either accidentally or on purpose. Typical misused products are black-market liquor and automotive products, e.g., windshield washer fluids. In addition to less toxic solvents, these liquids may contain the deadly methanol. Symptoms of even lethal solvent poisoning are often non-specific at the early stage. The present series of studies was carried out to develop a method for solvent intoxication breath diagnostics to speed up the diagnosis procedure conventionally based on blood tests. Especially in the case of methanol ingestion, the analysis method should be sufficiently sensitive and accurate to determine the presence of even small amounts of methanol from the mixture of ethanol and other less-toxic components. In addition to the studies on the FT-IR method, the Dräger 7110 evidential breath analyzer was examined to determine its ability to reveal a coexisting toxic solvent. An industrial Fourier transform infrared analyzer was modified for breath testing. The sample cell fittings were widened and the cell size reduced in order to get an alveolar sample directly from a single exhalation. The performance and the feasibility of the Gasmet FT-IR analyzer were tested in clinical settings and in the laboratory. Actual human breath screening studies were carried out with healthy volunteers, inebriated homeless men, emergency room patients and methanol-intoxicated patients. A number of the breath analysis results were compared to blood test results in order to approximate the blood-breath relationship. In the laboratory experiments, the analytical performance of the Gasmet FT-IR analyzer and Dräger 7110 evidential breath analyzer was evaluated by means of artificial samples resembling exhaled breath. The investigations demonstrated that a successful breath ethanol analysis by Dräger 7110 evidential breath analyzer could exclude any significant methanol intoxication. In contrast, the device did not detect very high levels of acetone, 1-propanol and 2-propanol in simulated breath. The Dräger 7110 evidential breath ethanol analyzer was not equipped to recognize the interfering component. According to the studies the Gasmet FT-IR analyzer was adequately sensitive, selective and accurate for solvent intoxication diagnostics. In addition to diagnostics, the fast breath solvent analysis proved feasible for controlling the ethanol and methanol concentration during haemodialysis treatment. Because of the simplicity of the sampling and analysis procedure, non-laboratory personnel, such as police officers or social workers, could also operate the analyzer for screening purposes.