9 resultados para WATER-USE EFFICIENCY
em Helda - Digital Repository of University of Helsinki
Resumo:
Nitrogen (N) is one of the main inputs in cereal cultivation and as more than half of the arable land in Finland is used for cereal production, N has contributed substantially to agricultural pollution through fertilizer leaching and runoff. Based on this global phenomenon, the European Community has launched several directives to reduce agricultural emissions to the environment. Trough such measures, and by using economic incentives, it is expected that northern European agricultural practices will, in the future, include reduced N fertilizer application rates. Reduced use of N fertilizer is likely to decrease both production costs and pollution, but could also result in reduced yields and quality if crops experience temporary N deficiency. Therefore, more efficient N use in cereal production, to minimize pollution risks and maximize farmer income, represents a current challenge for agronomic research in the northern growing areas. The main objective of this study was to determine the differences in nitrogen use efficiency (NUE) among spring cereals grown in Finland. Additional aims were to characterize the multiple roles of NUE by analysing the extent of variation in NUE and its component traits among different cultivars, and to understand how other physiological traits, especially radiation use efficiency (RUE) and light interception, affect and interact with the main components of NUE and contribute to differences among cultivars. This study included cultivars of barley (Hordeum vulgare L.), oat (Avena sativa L.) and wheat (Triticum aestivum L.). Field experiments were conducted between 2001 and 2004 at Jokioinen, in Finland. To determine differences in NUE among cultivars and gauge the achievements of plant breeding in NUE, 17-18 cultivars of each of the three cereal species released between 1909 and 2002 were studied. Responses to nitrogen of landraces, old cultivars and modern cultivars of each cereal species were evaluated under two N regimes (0 and 90 kg N ha-1). Results of the study revealed that modern wheat, oat and barley cultivars had similar NUE values under Finnish growing conditions and only results from a wider range of cultivars indicated that wheat cultivars could have lower NUE than the other species. There was a clear relationship between nitrogen uptake efficiency (UPE) and NUE in all species whereas nitrogen utilization efficiency (UTE) had a strong positive relationship with NUE only for oat. UTE was clearly lower in wheat than in other species. Other traits related to N translocation indicated that wheat also had a lower harvest index, nitrogen harvest index and nitrogen remobilisation efficiency and therefore its N translocation efficiency was confirmed to be very low. On the basis of these results there appears to be potential and also a need for improvement in NUE. These results may help understand the underlying physiological differences in NUE and could help to identify alternative production options, such as the different roles that species can play in crop rotations designed to meet the demands of modern agricultural practices.
Resumo:
Acacia senegal, the gum arabic producing tree, is the most important component in traditional dryland agroforestry systems in the Blue Nile region, Sudan. The aim of the present study was to provide new knowledge on the potential use of A. senegal in dryland agroforestry systems on clay soils, as well as information on tree/crop interaction, and on silvicultural and management tools, with consideration on system productivity, nutrient cycling and sustainability. Moreover, the aim was also to clarify the intra-specific variation in the performance of A. senegal and, specifically, the adaptation of trees of different origin to the clay soils of the Blue Nile region. In agroforestry systems established at the beginning of the study, tree and crop growth, water use, gum and crop yields, nutrient cycling and system performance were investigated for a period of four years (1999 to 2002). Trees were grown at 5 x 5 m and 10 x 10 m spacing alone or in mixture with sorghum or sesame; crops were also grown in sole culture. The symbiotic biological N2 fixation by A. senegal was estimated using the 15N natural abundance (δ15N) procedure in eight provenances collected from different environments and soil types of the gum arabic belt and grown in clay soil in the Blue Nile region. Balanites aegyptiaca (a non-legume) was used as a non-N-fixing reference tree species, so as to allow 15N-based estimates of the proportion of the nitrogen in trees derived from the atmosphere. In the planted acacia trees, measurements were made on shoot growth, water-use efficiency (as assessed by the δ13C method) and (starting from the third year) gum production. Carbon isotope ratios were obtained from the leaves and branch wood samples. The agroforestry system design caused no statistically significant variation in water use, but the variation was highly significant between years, and the highest water use occurred in the years with high rainfall. No statistically significant differences were found in sorghum or sesame yields when intercropping and sole crop systems were compared (yield averages were 1.54 and 1.54 ha-1 for sorghum and 0.36 and 0.42 t ha-1 for sesame in the intercropped and mono-crop plots, respectively). Thus, at an early stage of agroforestry system management, A. senegal had no detrimental effect on crop yield, but the pattern of resource capture by trees and crops may change as the system matures. Intercropping resulted in taller trees and larger basal and crown diameters as compared to the development of sole trees. It also resulted in a higher land equivalent ratio. When gum yields were analysed it was found that a significant positive relationship existed between the second gum picking and the total gum yield. The second gum picking seems to be a decisive factor in gum production and could be used as an indicator for the total gum yield in a particular year. In trees, the concentrations of N and P were higher in leaves and roots, whereas the levels of K were higher in stems, branches and roots. Soil organic matter, N, P and K contents were highest in the upper soil stratum. There was some indication that the P content slightly increased in the topsoil as the agroforestry plantations aged. At a stocking of 400 trees ha-1 (5 x 5 m spacing), A. senegal accumulated in the biomass a total of 18, 1.21, 7.8 and 972 kg ha-1of N, P, K and OC, respectively. Trees contributed ca. 217 and 1500 kg ha-1 of K and OC, respectively, to the top 25-cm of soil over the first four years of intercropping. Acacia provenances of clay plain origin showed considerable variation in seed weight. They also had the lowest average seed weight as compared to the sandy soil (western) provenances. At the experimental site in the clay soil region, the clay provenances were distinctly superior to the sand provenances in all traits studied but especially in basal diameter and crown width, thus reflecting their adaptation to the environment. Values of δ13C, indicating water use efficiency, were higher in the sand soil group as compared to the clay one, both in leaves and in branch wood. This suggests that the sand provenances (with an average value of -28.07 ) displayed conservative water use and high drought tolerance. Of the clay provenances, the local one (Bout) displayed a highly negative (-29.31 ) value, which indicates less conservative water use that resulted in high productivity at this particular clay-soil site. Water use thus appeared to correspond to the environmental conditions prevailing at the original locations for these provenances. Results suggest that A. senegal provenances from the clay part of the gum belt are adapted for a faster growth rate and higher biomass and gum productivity as compared to provenances from sand regions. A strong negative relationship was found between the per-tree gum yield and water use efficiency, as indicated by δ13C. The differences in water use and gum production were greater among provenance groups than within them, suggesting that selection among rather than within provenances would result in distinct genetic gain in gum yield. The relative δ15N values ( ) were higher in B. aegyptiaca than in the N2-fixing acacia provenances. The amount of Ndfa increased significantly with age in all provenances, indicating that A. senegal is a potentially efficient nitrogen fixer and has an important role in t agroforestry development. The total above-ground contribution of fixed N to foliage growth in 4-year-old A. senegal trees was highest in the Rahad sand-soil provenance (46.7 kg N ha-1) and lowest in the Mazmoom clay-soil provenance (28.7 kg N ha-1). This study represents the first use of the δ15N method for estimating the N input by A. senegal in the gum belt of Sudan. Key words: Acacia senegal, agroforestry, clay plain, δ13C, δ15N, gum arabic, nutrient cycling, Ndfa, Sorghum bicolor, Sesamum indicum
Resumo:
Cyanobacterial mass occurrences, also known as water blooms, have been associated with adverse health effects of both humans and animals. They can also be a burden to drinking water treatment facilities. Risk assessments of the blooms have generally focused on the cyanobacteria themselves and their toxins. However, heterotrophic bacteria thriving among cyanobacteria may also be responsible for many of the adverse health effects, but their role as the etiological agents of these health problems is poorly known. In addition, studies on the water purification efficiency of operating water treatment plants during cyanobacterial mass occurrences in their water sources are rare. In the present study, over 600 heterotrophic bacterial strains were isolated from natural freshwater, brackish water or from treated drinking water. The sampling sites were selected as having frequent cyanobacterial occurrences in the water bodies or in the water sources of the drinking water treatment plants. In addition, samples were taken from sites where cyanobacterial water blooms were surmised to have caused human health problems. The isolated strains represented bacteria from 57 different genera of the Gamma-, Alpha- or Betaproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Bacilli and Deinococci classes, based on their partial 16S rRNA sequences. Several isolates had no close relatives among previously isolated bacteria or cloned 16S rRNA genes of uncultivated bacteria. The results show that water blooms are associated with a diverse community of cultivable heterotrophic bacteria. Chosen subsets of the isolated strains were analysed for features such as their virulence gene content and possible effect on cyanobacterial growth. Of the putatively pathogenic haemolytic strains isolated in the study, the majority represented the genus Aeromonas. Therefore, the Aeromonas spp. strains isolated from water samples associated with adverse health effects were screened for the virulence gene types encoding for enterotoxins (ast, alt and act/aerA/hlyA), flagellin subunits (flaA/flaB), lipase (lip/pla/lipH3/alp-1) and elastase (ahyB) by PCR. The majority (90%) of the Aeromonas strains included one or more of the six screened Aeromonas virulence gene types. The most common gene type was act, which was present in 77% of the strains. The fla, ahyB and lip genes were present in 30 37% of the strains. The prevalence of the virulence genes implies that the Aeromonas may be a factor in some of the cyanobacterial associated health problems. Of the 183 isolated bacterial strains that were studied for possible effects on cyanobacterial growth, the majority (60%) either enhanced or inhibited growth of cyanobacteria. In most cases, they enhanced the growth, which implies mutualistic interactions. The results indicate that the heterotrophic bacteria have a role in the rise and fall of the cyanobacterial water blooms. The genetic and phenotypic characteristics and the ability to degrade cyanobacterial hepatotoxins of 13 previously isolated Betaproteobacteria strains, were also studied. The strains originated from Finnish lakes with frequent cyanobacterial occurrence. Tested strains degraded microcystins -LR and -YR and nodularin. The strains could not be assigned to any described bacterial genus or species based on their genetic or phenotypic features. On the basis of their characteristics a new genus and species Paucibacter toxinivorans was proposed for them. The water purification efficiency of the drinking water treatment processes during cyanobacterial water bloom in water source was assessed at an operating surface water treatment plant. Large phytoplankton, cyanobacterial hepatotoxins, endotoxins and cultivable heterotrophic bacteria were efficiently reduced to low concentrations, often below the detection limits. In contrast, small planktonic cells, including also possible bacterial cells, regularly passed though the water treatment. The passing cells may contribute to biofilm formation within the water distribution system, and therefore lower the obtained drinking water quality. The bacterial strains of this study offer a rich source of isolated strains for examining interactions between cyanobacteria and the heterotrophic bacteria associated with them. The degraders of cyanobacterial hepatotoxins could perhaps be utilized to assist the removal of the hepatotoxins during water treatment, whereas inhibitors of cyanobacterial growth might be useful in controlling cyanobacterial water blooms. The putative pathogenicity of the strains suggests that the health risk assessment of the cyanobacterial blooms should also cover the heterotrophic bacteria.
Resumo:
In Cambodia, water has a special purpose as a source of life and livelihoods. Along with agriculture, fishing and forest use, industry, hydropower, navigation and tourism compete for the water resources. When rights and responsibilities related to essential and movable water are unclear, conflicts emerge easily. Therefore, water management is needed in order to plan and control the use of water resources. The international context is characterized by the Mekong River that flows through six countries. All of the countries by the river have very different roles and interests already depending on their geographical location. At the same time, water is also a tool for cooperation and peace. Locally, the water resources and related livelihoods create base for well-being, for economical and human resources in particular. They in turn are essential for the local people to participate and defend their rights to water use. They also help to construct the resource base of the state administration. Cambodia is highly dependent on the Mekong River. However, Cambodia has a volatile history whose effects can be seen for example in population structure, once suspended public institutions and weakened trust in the society. Relatively stable conditions came to the country as late as in the 1990s, therefore Cambodia for example has a weak status within the Mekong countries. This Master s thesis forms international, national and local interest groups of water use and analyzes their power relations and resources to affect water management. The state is seen as the salient actor as it has the formal responsibility of the water resources and of the coordination between the actions of different levels. In terms of water use this study focuses on production, in management on planning and in power relations on the resources. Water resources of Cambodia are seen consisting of the Mekong River and Tonle Sap Lake and the time span of the study is between the years 1991 and 2006. The material consists of semi-structured interviews collected during summer 2006 in Finland and in Cambodia as well as of literature and earlier studies. The results of the study show that the central state has difficulties to coordinate the actions of different actors because of its resource deficit and internal conflicts. The lessons of history and the vested interests of the actors of the state make it difficult to plan and to strengthen legislation. It seems that the most needed resources at the central state level are intangible as at the village level instead, the tangible resources (fulfilling the basic needs) are primarily important. The local decision-making bodies, NGOs and private sector mainly require legislation and legitimacy to support their role. However, the civil society and the international supporters are active and there are possibilities for new cooperation networks. Keywords: Water management, resources, participation, Cambodia, Mekong
Resumo:
With respect to resource management and environmental impact, organic farming offers rationales for agricultural sustainability. However, agronomic productivity is usually higher with conventional farming. This work aimed at investigating two factors of major importance for the agronomic productivity of organic crop husbandry, nitrogen (N) supply through symbiotic N fixation (SNF) and weed occurrence. Perennial red clover-grass leys and spring cereal crops subjected to regular agricultural practices were studied on 34 organic farms located in the southern and the north-western coastal regions of Finland. Herbage growth, clover content as a proportion of the ley and extent of SNF in perennial leys, and the occurrence of weed species and weed-crop competition in spring cereal stands were related to climate conditions, soil properties, and management measures. The herbage accumulated from the first and the second cut of one- and two-year-old leys averaged 7.5 t DM ha-1 (SD ± 1.7 t DM ha-1); the clover content averaged 43.9% (SD ± 18.8%). Along with the clover content, herbage production decreased with ley age. Radiation use efficiency (RUE) correlated positively with clover proportion but despite low clover contents, three-year-old leys were still productive with regard to RUE. SNF in the accumulated annual growth of one- and two-year-old leys averaged 247.5 kg N ha-1 yr-1 (SD ± 114.4 kg N ha-1 yr-1). It was supposed that if red clover-grass leys constituted 40% of the rotation, then the mean N supply by SNF would be able to sustain two or three succeeding cereal crops (green manure and forage ley, respectively), yielding 3.0 to 4.0 t grain ha-1. Being a function of clover biomass, the SNF increased from the first to the second cut and thereafter declined with ley age. Coefficients of variation of clover contents (and SNF) between and within fields were around 50%, which was about twice as high as those of herbage production. The lower were the clover contents, the higher were the within-field variations of clover as a proportion of the ley. Low clover contents in one-year-old leys and increasing variability with ley age suggested that red clover growth was limited by poor establishment and poor overwintering. The proportions of clover in leys were lower and their variability was higher in the northwest than in the south. Soil properties, primarily texture and structure, had a major impact on clover proportion and herbage production, which largely explained regional differences in ley growth. Within-field variability of soil properties can be amended through site-specific measures, including drainage, liming, and applications of organic manures and mineral fertilizers. Overwintering and the persistence of leys can be improved by the choice of winter-hardy varieties, careful establishment and the appropriate harvest regime. Mean grain yields of spring cereal crops amounted to 3.2 t ha-1 in the south and 3.6 t ha-1 in the northwest. At 570 and 565 m-2 for the south and northwest respectively, mean weed densities did not differ between the regions, whereas the respective mean weed biomass of 697 and 1594 kg dry weight ha-1, respectively did differ. Weed abundance varied remarkably between single fields. The number of weed species was higher in the south than in the northwest. For example, Fumaria officinalis and Lamium spp. were found only in the south. Frequencies and abundances of Lapsana communis, Myosotis arvensis, Polygonum aviculare, Tripleurospermum inodorum, and Vicia spp. were higher in the south, whereas those of Elymus repens, Persicaria spp. and Spergula arvensis were higher in the northwest. The number of years since conversion to organic farming, i.e. long-term management, was one of the variables that explained the abundance of single weed species. E. repens was the weed species whose biomass increased most with the duration of organic farming. Another significant variable was crop biomass, which was affected by short-term management. The presence of different weed species was related to the duration of organic farming and to low crop yield. This finding demonstrated that it was not the organic farming regime per se, which resulted in high weed infestation and low yielding crops, but failures in the understanding and the management of organic farming systems. Successful weed control relies on farm- and field-specific long- and short-term management approaches. The agronomic productivity of ley and spring cereal crops managed by full-time farmers with an interest in organic farming was on the same level as of the mean for conventional farming. Given the many options for further improvements of the agronomic performance of organic arable systems, organic farming offers foundations for the development of sustainable agriculture. The main threat to the sustainability of farming in Finland, both conventional and organic, is the spatial separation of crop production and animal husbandry by region, along with the simplification of associated crop rotations.
Resumo:
In agricultural systems which rely on organic sources of nitrogen (N), of which the primary source is biological N fixation (BNF), it is extremely important to use N as efficiently as possible with minimal losses to the environment. The amount of N through BNF should be maximised and the availability of the residual N after legumes should be synchronised to the subsequent plant needs in the crop rotation. Six field experiments in three locations in Finland were conducted in 1994-2006 to determine the productivity and amount of BNF in red clover-grass leys of different ages. The residual effects of the leys for subsequent cereals as well as the N leaching risk were studied by field measurements and by simulation using the CoupModel. N use efficiency (NUE) and N balances were also calculated. The yields of red clover-grass leys were highest in the two-year-old leys (6 700 kg ha-1) under study, but the differences between 2- and 3-year old leys were not high in most cases. BNF (90 kg ha-1 in harvested biomass) correlated strongly with red clover dry matter yield, as the proportion of red clover N derived from the atmosphere (> 85%) was high in our conditions of organically farmed field with low soil mineral N. A red clover content of over 40% in dry matter is targeted to avoid negative N-balances and to gain N for the subsequent crop. Surprisingly, the leys had no significant effect on the yields and N uptake of the two subsequent cereals (winter rye or spring wheat, followed by spring oats). On the other hand, yield and C:N of leys, as well as BNF-N and total-N incorporated into the soil influenced on subsequent cereal yields. NUE of cereals from incorporated ley crop residues was rather high, varying from 30% to 80% (mean 48%). The mineral N content of soil in the profile of 0-90 cm was low, mainly 15-30 kg ha-1. Simulation of N dynamics by CoupModel functioned satisfactorily and is considered a useful tool to estimate N flows in cropping systems relying on organic N sources. Understanding the long-term influence of cultivation history and soil properties on N dynamics remains to be a challenge to further research.
Resumo:
New chemical entities with unfavorable water solubility properties are continuously emerging in drug discovery. Without pharmaceutical manipulations inefficient concentrations of these drugs in the systemic circulation are probable. Typically, in order to be absorbed from the gastrointestinal tract, the drug has to be dissolved. Several methods have been developed to improve the dissolution of poorly soluble drugs. In this study, the applicability of different types of mesoporous (pore diameters between 2 and 50 nm) silicon- and silica-based materials as pharmaceutical carriers for poorly water soluble drugs was evaluated. Thermally oxidized and carbonized mesoporous silicon materials, ordered mesoporous silicas MCM-41 and SBA-15, and non-treated mesoporous silicon and silica gel were assessed in the experiments. The characteristic properties of these materials are the narrow pore diameters and the large surface areas up to over 900 m²/g. Loading of poorly water soluble drugs into these pores restricts their crystallization, and thus, improves drug dissolution from the materials as compared to the bulk drug molecules. In addition, the wide surface area provides possibilities for interactions between the loaded substance and the carrier particle, allowing the stabilization of the system. Ibuprofen, indomethacin and furosemide were selected as poorly soluble model drugs in this study. Their solubilities are strongly pH-dependent and the poorest (< 100 µg/ml) at low pH values. The pharmaceutical performance of the studied materials was evaluated by several methods. In this work, drug loading was performed successfully using rotavapor and fluid bed equipment in a larger scale and in a more efficient manner than with the commonly used immersion methods. It was shown that several carrier particle properties, in particular the pore diameter, affect the loading efficiency (typically ~25-40 w-%) and the release rate of the drug from the mesoporous carriers. A wide pore diameter provided easier loading and faster release of the drug. The ordering and length of the pores also affected the efficiency of the drug diffusion. However, these properties can also compensate the effects of each other. The surface treatment of porous silicon was important in stabilizing the system, as the non-treated mesoporous silicon was easily oxidized at room temperature. Different surface chemical treatments changed the hydrophilicity of the porous silicon materials and also the potential interactions between the loaded drug and the particle, which further affected the drug release properties. In all of the studies, it was demonstrated that loading into mesoporous silicon and silica materials improved the dissolution of the poorly soluble drugs as compared to the corresponding bulk compounds (e.g. after 30 min ~2-7 times more drug was dissolved depending on the materials). The release profile of the loaded substances remained similar also after 3 months of storage at 30°C/56% RH. The thermally carbonized mesoporous silicon did not compromise the Caco-2 monolayer integrity in the permeation studies and improved drug permeability was observed. The loaded mesoporous silica materials were also successfully compressed into tablets without compromising their characteristic structural and drug releasing properties. The results of this research indicated that mesoporous silicon/silica-based materials are promising materials to improve the dissolution of poorly water soluble drugs. Their feasibility in pharmaceutical laboratory scale processes was also confirmed in this thesis.