7 resultados para WAG-CO2. Recuperação. Óleo leve. Modelagem de reservatório. Simulação.

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forest vegetation takes up atmospheric carbon dioxide (CO2) in photosynthesis. Part of the fixed carbon is released back into the atmosphere during plant respiration but a substantial part is stored as plant biomass, especially in the stems of trees. Carbon also accumulates in the soil as litter and via the roots. CO2 is released into the atmosphere from these carbon stocks in the decomposition of dead biomass. Carbon balance of a forest stand is the difference between the CO2 uptake and CO2 efflux. This study quantifies and analyses the dynamics of carbon balance and component CO2 fluxes in four Southern Finnish Scots pine stands that covered the typical economic rotation time of 80 years. The study was based on direct flux measurements with chambers and eddy covariance (EC), and modelling of component CO2 fluxes. The net CO2 exchange of the stand was partitioned into component fluxes: photosynthesis of trees and ground vegetation, respiration of tree foliage and stems, and CO2 efflux from the soil. The relationships between the component fluxes and the environmental factors (light, temperature, atmospheric CO2, air humidity and soil moisture) were studied with mathematical modelling. The annual CO2 balance varied from a source of about 400 g C/m2 at a recently clearcut site to net CO2 uptake of 200 300 g C/m2 in a middle-aged (40-year-old) and a mature (75-year-old) stand. A 12-year-old sapling site was at the turning point from source to a sink of CO2. In the middle-aged stand, photosynthetic production was dominated by trees. Under closed pine canopies, ground vegetation accounted for 10 20% of stand photosynthesis whereas at the open sites the proportion and also the absolute photosynthesis of ground vegetation was much higher. The aboveground respiration was dominated by tree foliage which accounted for one third of the ecosystem respiration. Rate of wood respiration was in the order of 10% of total ecosystem respiration. CO2 efflux from the soil dominated the ecosystem respiratory fluxes in all phases of stand development. Instantaneous and delayed responses to the environmental driving factors could predict well within-year variability in photosynthetic production: In the short term and during the growing season photosynthesis follows primarily light while the seasonal variation is more strongly connected to temperature. The temperature relationship of the annual cycle of photosynthesis was found to be almost equal in the southern boreal zone and at the timberline in the northern boreal zone. The respiratory fluxes showed instantaneous and seasonal temperature relationships but they could also be connected to photosynthesis at an annual timescale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Man-induced climate change has raised the need to predict the future climate and its feedback to vegetation. These are studied with global climate models; to ensure the reliability of these predictions, it is important to have a biosphere description that is based upon the latest scientific knowledge. This work concentrates on the modelling of the CO2 exchange of the boreal coniferous forest, studying also the factors controlling its growing season and how these can be used in modelling. In addition, the modelling of CO2 gas exchange at several scales was studied. A canopy-level CO2 gas exchange model was developed based on the biochemical photosynthesis model. This model was first parameterized using CO2 exchange data obtained by eddy covariance (EC) measurements from a Scots pine forest at Sodankylä. The results were compared with a semi-empirical model that was also parameterized using EC measurements. Both of the models gave satisfactory results. The biochemical canopy-level model was further parameterized at three other coniferous forest sites located in Finland and Sweden. At all the sites, the two most important biochemical model parameters showed seasonal behaviour, i.e., their temperature responses changed according to the season. Modelling results were improved when these changeover dates were related to temperature indices. During summer-time the values of the biochemical model parameters were similar at all the four sites. Different control factors for CO2 gas exchange were studied at the four coniferous forests, including how well these factors can be used to predict the initiation and cessation of the CO2 uptake. Temperature indices, atmospheric CO2 concentration, surface albedo and chlorophyll fluorescence (CF) were all found to be useful and have predictive power. In addition, a detailed simulation study of leaf stomata in order to separate physical and biochemical processes was performed. The simulation study brought to light the relative contribution and importance of the physical transport processes. The results of this work can be used in improving CO2 gas exchange models in boreal coniferous forests. The meteorological and biological variables that represent the seasonal cycle were studied, and a method for incorporating this cycle into a biochemical canopy-level model was introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Right as an Argument. Leo Mechelin and the Finnish Question 1886-1912 At the turn of the 20th century the Finnish Question rose up as a political and juridical issue at the international arena. The vaguely précised position of Finland in the Russian empire led to diverse conclusions concerning the correctness of the February manifesto of 1899. It was predominantly among a European elite of politicians, cultural workers and academics the issue rose some interest. Finns were active making propaganda for their cause, and they put an emphasis on the claim that the right was on the Finnish side. In the study Elisabeth Stubb compare the Finnish, Russian and European statements about the Finnish Question and analyse their use of right as an argument. The Finnish Question offers at the same time a case study of a national entity which possesses a political sphere of life but is not fully independent, and its possibilities to drive its interests in an international context. Leo Mechelin (1839-1914), the leader of the Finnish propaganda organization abroad, is used as a point of departure. The biographical stance is formed into a triangle, where Leo Mechelin, the idea of right and the Finnish Question abroad are the three cornerstones. The treatment of one cornerstone sheds a ligth on the two others. The metaphor of triangulation also worked as a method to reach "a third stance" in a scinetific and political issue that usually is polarised into two opposite alternatives. An adherence to a strict legal right could not in the end offer a complete, unquestionable and satisfactory solution to the Finnsih Question, it was dependent on "the right of state wisdom and sound insight". The Finnish propaganda abroad used almost completely alternative ways of making politics. The propaganda did not have a decisive effect on countries' official politics, but gained unofficial support, especially in the public opinion and in academic statements. Mechelin claimed that the political field was dependent on public opinion and scientific research. Together with the official politics these two fields formed a triangle that shared the task of balancing the political arena and preventing it from making unwise decisions of taking an unjust turn. The international sphere worked as a balancing part in the Finnish Question. Mechelin tried by claiming the status of state for Finland's part to secure the country a place at the official international arena. At the same time, and especially when the claim was not fully adopted, he emphasised, and in a European context worked for, that right would become the guiding light not only for international relations, but also for the policy making in the inner life of the state.