3 resultados para Visione, flusso ottico, autopilota, algoritmo, Smart Camera, Sonar, giroscopio

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern smart phones often come with a significant amount of computational power and an integrated digital camera making them an ideal platform for intelligents assistants. This work is restricted to retail environments, where users could be provided with for example navigational in- structions to desired products or information about special offers within their close proximity. This kind of applications usually require information about the user's current location in the domain environment, which in our case corresponds to a retail store. We propose a vision based positioning approach that recognizes products the user's mobile phone's camera is currently pointing at. The products are related to locations within the store, which enables us to locate the user by pointing the mobile phone's camera to a group of products. The first step of our method is to extract meaningful features from digital images. We use the Scale- Invariant Feature Transform SIFT algorithm, which extracts features that are highly distinctive in the sense that they can be correctly matched against a large database of features from many images. We collect a comprehensive set of images from all meaningful locations within our domain and extract the SIFT features from each of these images. As the SIFT features are of high dimensionality and thus comparing individual features is infeasible, we apply the Bags of Keypoints method which creates a generic representation, visual category, from all features extracted from images taken from a specific location. A category for an unseen image can be deduced by extracting the corresponding SIFT features and by choosing the category that best fits the extracted features. We have applied the proposed method within a Finnish supermarket. We consider grocery shelves as categories which is a sufficient level of accuracy to help users navigate or to provide useful information about nearby products. We achieve a 40% accuracy which is quite low for commercial applications while significantly outperforming the random guess baseline. Our results suggest that the accuracy of the classification could be increased with a deeper analysis on the domain and by combining existing positioning methods with ours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing dairy farm size and increase in automation in livestock production require that new methods are used to monitor animal health. In this study, a thermal camera was tested for its capacity to detect clinical mastitis. Mastitis was experimentally induced in 6 cows with 10 mu g of Escherichia coli lipopolysaccharide (LPS). The LPS was infused into the left forequarter of each cow, and the right forequarters served as controls. Clinical examination for systemic and local signs and sampling for indicators of inflammation in milk were carried out before morning and evening milking throughout the 5-d experimental period and more frequently on the challenge day. Thermal images of experimental and control quarters were taken at each sampling time from lateral and medial angles. The first signs of clinical mastitis were noted in all cows 2 h postchallenge and included changes in general appearance of the cows and local clinical signs in the affected udder quarter. Rectal temperature, milk somatic cell count, and electrical conductivity were increased 4 h postchallenge and milk N-acetyl-beta-D-glucosaminidase activity 8 h postchallenge. The thermal camera was successful in detecting the 1 to 1.5 degrees C temperature change on udder skin associated with clinical mastitis in all cows because temperature of the udder skin of the experimental and control quarters increased in line with the rectal temperature. Yet, local signs on the udder were seen before the rise in udder skin and body temperature. The udder represents a sensitive site for detection of any febrile disease using a noninvasive method. A thermal camera mounted in a milking or feeding parlor could detect temperature changes associated with clinical mastitis or other diseases in a dairy herd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss and degradation of forest cover is currently a globally recognised problem. The fragmentation of forests is further affecting the biodiversity and well-being of the ecosystems also in Kenya. This study focuses on two indigenous tropical montane forests in the Taita Hills in southeastern Kenya. The study is a part of the TAITA-project within the Department of Geography in the University of Helsinki. The study forests, Ngangao and Chawia, are studied by remote sensing and GIS methods. The main data includes black and white aerial photography from 1955 and true colour digital camera data from 2004. This data is used to produce aerial mosaics from the study areas. The land cover of these study areas is studied by visual interpretation, pixel-based supervised classification and object-oriented supervised classification. The change of the forest cover is studied with GIS methods using the visual interpretations from 1955 and 2004. Furthermore, the present state of the study forests is assessed with leaf area index and canopy closure parameters retrieved from hemispherical photographs as well as with additional, previously collected forest health monitoring data. The canopy parameters are also compared with textural parameters from digital aerial mosaics. This study concludes that the classification of forest areas by using true colour data is not an easy task although the digital aerial mosaics are proved to be very accurate. The best classifications are still achieved with visual interpretation methods as the accuracies of the pixel-based and object-oriented supervised classification methods are not satisfying. According to the change detection of the land cover in the study areas, the area of indigenous woodland in both forests has decreased in 1955 2004. However in Ngangao, the overall woodland area has grown mainly because of plantations of exotic species. In general, the land cover of both study areas is more fragmented in 2004 than in 1955. Although the forest area has decreased, forests seem to have a more optimistic future than before. This is due to the increasing appreciation of the forest areas.