6 resultados para Vibration isolation
em Helda - Digital Repository of University of Helsinki
Resumo:
The importance of intermolecular interactions to chemistry, physics, and biology is difficult to overestimate. Without intermolecular forces, condensed phase matter could not form. The simplest way to categorize different types of intermolecular interactions is to describe them using van der Waals and hydrogen bonded (H-bonded) interactions. In the H-bond, the intermolecular interaction appears between a positively charged hydrogen atom and electronegative fragments and it originates from strong electrostatic interactions. H-bonding is important when considering the properties of condensed phase water and in many biological systems including the structure of DNA and proteins. Vibrational spectroscopy is a useful tool for studying complexes and the solvation of molecules. Vibrational frequency shift has been used to characterize complex formation. In an H-bonded system A∙∙∙H-X (A and X are acceptor and donor species, respectively), the vibrational frequency of the H-X stretching vibration usually decreases from its value in free H-X (red-shift). This frequency shift has been used as evidence for H-bond formation and the magnitude of the shift has been used as an indicator of the H-bonding strength. In contrast to this normal behavior are the blue-shifting H-bonds, in which the H-X vibrational frequency increases upon complex formation. In the last decade, there has been active discussion regarding these blue-shifting H-bonds. Noble-gases have been considered inert due to their limited reactivity with other elements. In the early 1930 s, Pauling predicted the stable noble-gas compounds XeF6 and KrF6. It was not until three decades later Neil Bartlett synthesized the first noble-gas compound, XePtF6, in 1962. A renaissance of noble-gas chemistry began in 1995 with the discovery of noble-gas hydride molecules at the University of Helsinki. The first hydrides were HXeCl, HXeBr, HXeI, HKrCl, and HXeH. These molecules have the general formula of HNgY, where H is a hydrogen atom, Ng is a noble-gas atom (Ar, Kr, or Xe), and Y is an electronegative fragment. At present, this class of molecules comprises 23 members including both inorganic and organic compounds. The first and only argon-containing neutral chemical compound HArF was synthesized in 2000 and its properties have since been investigated in a number of studies. A helium-containing chemical compound, HHeF, was predicted computationally, but its lifetime has been predicted to be severely limited by hydrogen tunneling. Helium and neon are the only elements in the periodic table that do not form neutral, ground state molecules. A noble-gas matrix is a useful medium in which to study unstable and reactive species including ions. A solvated proton forms a centrosymmetric NgHNg+ (Ng = Ar, Kr, and Xe) structure in a noble-gas matrix and this is probably the simplest example of a solvated proton. Interestingly, the hypothetical NeHNe+ cation is isoelectronic with the water-solvated proton H5O2+ (Zundel-ion). In addition to the NgHNg+ cations, the isoelectronic YHY- (Y = halogen atom or pseudohalogen fragment) anions have been studied with the matrix-isolation technique. These species have been known to exist in alkali metal salts (YHY)-M+ (M = alkali metal e.g. K or Na) for more than 80 years. Hydrated HF forms the FHF- structure in aqueous solutions, and these ions participate in several important chemical processes. In this thesis, studies of the intermolecular interactions of HNgY molecules and centrosymmetric ions with various species are presented. The HNgY complexes show unusual spectral features, e.g. large blue-shifts of the H-Ng stretching vibration upon complexation. It is suggested that the blue-shift is a normal effect for these molecules, and that originates from the enhanced (HNg)+Y- ion-pair character upon complexation. It is also found that the HNgY molecules are energetically stabilized in the complexed form, and this effect is computationally demonstrated for the HHeF molecule. The NgHNg+ and YHY- ions also show blue-shifts in their asymmetric stretching vibration upon complexation with nitrogen. Additionally, the matrix site structure and hindered rotation (libration) of the HNgY molecules were studied. The librational motion is a much-discussed solid state phenomenon, and the HNgY molecules embedded in noble-gas matrices are good model systems to study this effect. The formation mechanisms of the HNgY molecules and the decay mechanism of NgHNg+ cations are discussed. A new electron tunneling model for the decay of NgHNg+ absorptions in noble-gas matrices is proposed. Studies of the NgHNg+∙∙∙N2 complexes support this electron tunneling mechanism.
Resumo:
The main objectives in this thesis were to isolate and identify the phenolic compounds in wild (Sorbus aucuparia) and cultivated rowanberries, European cranberries (Vaccinium microcarpon), lingonberries (Vaccinium vitis-idaea), and cloudberries (Rubus chamaemorus), as well as to investigate the antioxidant activity of phenolics occurring in berries in food oxidation models. In addition, the storage stability of cloudberry ellagitannin isolate was studied. In wild and cultivated rowanberries, the main phenolic compounds were chlorogenic acids and neochlorogenic acids with increasing anthocyanin content depending on the crossing partners. The proanthocyanidin contents of cranberries and lingonberries were investigated, revealing that the lingonberry contained more rare A-type dimers than the European cranberry. The liquid chromatography mass spectrometry (LC-MS) analysis of cloudberry ellagitannins showed that trimeric lambertianin C and sanguiin H-10 were the main ellagitannins. The berries, rich in different types of phenolic compounds including hydroxycinnamic acids, proanthocyanidins, and ellagitannins, showed antioxidant activity toward lipid oxidation in liposome and emulsion oxidation models. All the different rowanberry cultivars prevented lipid oxidation in the same way, in spite of the differences in their phenolic composition. In terms of liposomes, rowanberries were slightly more effective antioxidants than cranberry and lingonberry phenolics. Greater differences were found when comparing proanthocyanidin fractions. Proanthocyanidin dimers and trimers of both cranberries and lingonberries were most potent in inhibiting lipid oxidation. Antioxidant activities and antiradical capacities were also studied with hydroxycinnamic acid glycosides. The sinapic acid derivatives of the hydroxycinnamic acid glycosides were the most effective at preventing lipid oxidation in emulsions and liposomes and scavenging radicals in DPPH assay. In liposomes and emulsions, the formation of the secondary oxidation product, hexanal, was inhibited more than that of the primary oxidation product, conjugated diene hydroperoxides, by hydroxycinnamic acid derivatives. This indicates that they are principally chain-breaking antioxidants rather than metal chelators, although they possess chelating activity as well. The storage stability test of cloudberry ellagitannins was performed by storing ellagitannin isolate and ellagitannins encapsulated with maltodextrin at different relative vapor pressures. The storage stability was enhanced by the encapsulation when higher molecular weight maltodextrin was used. The best preservation was achieved when the capsules were stored at 0 or 33% relative vapor pressures. In addition, the antioxidant activities of encapsulated cloudberry extracts were followed during the storage period. Different storage conditions did not alter the antioxidant activity, even though changes in the ellagitannin contents were seen. The current results may be of use in improving the oxidative stability of food products by using berries as natural antioxidants.