19 resultados para Vertical differentiation

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the ovary, two new members of the large TGF-beta superfamily of growth factors were discovered in the 1990s. The oocyte was shown to express two closely related growth factors that were named growth differentiation factor 9 (GDF-9) and growth differentiation factor 9B (GDF-9B). Both of these proteins are required for normal ovarian follicle development although their individual significance varies between species. GDF-9 and GDF-9B mRNAs are expressed in the human oocytes from the primary follicle stage onwards. This thesis project was aimed to define the signalling mechanisms utilized by the oocyte secreted GDF-9. We used primary cultures of human granulosa luteal cells (hGL) as our cell model, and recombinant adenovirus-mediated gene transfer in manipulating the TGF-b family signalling cascade molecules in these cells. Overexpression of the constitutively active forms of the seven type I receptors, the activin receptor-like kinases 1-7 (ALK1-7), using recombinant adenoviruses caused a specific activation of either the Smad1 or Smad2 pathway proteins depending on the ALK used. Activation of both Smad1 and Smad2 proteins also stimulated the expression of dimeric inhibin B protein in hGL cells. Treatment with recombinant GDF-9 protein induced the specific activation of the Smad2 pathway and stimulated the expression of inhibin betaB subunit mRNA as well as inhibin B protein secretion in our cell model. Recombinant GDF-9 also activated the Smad3-responsive CAGA-luciferase reported construct, and the GDF-9 response in hGL cells was markedly potentiated upon the overexpression of Alk5 by adenoviral gene transduction. Alk5 overexpression also enhanced the GDF-9 induced inhibin B secretion by these cells. Similarly, in a mouse teratocarcinoma cell line P19, GDF-9 could activate the Smad2/3 pathway, and overexpression of ALK5 in COS7 cells rendered them responsive to GDF-9. Furthermore, transfection of rat granulosa cells with small interfering RNA for ALK5 or overexpression of the inhibitory Smad7 resulted in dose-dependent suppression of GDF-9 effects. In conclusion, this thesis shows that both Smad1 and Smad2 pathways are involved in controlling the regulation of inhibin B secretion. Therefore, in addition to endocrine control of inhibin production by the pituitary gonadotropins, also local paracrine factors within in the ovary, like the oocyte-derived growth factors, may contribute to controlling inhibin secretion. This thesis shows as well that like other TGF-beta family ligands, also GDF-9 signalling is mediated by the canonical type I and type II receptors with serine/threonine kinase activity, and the intracellular transcription factors, the Smads. Although GDF-9 binds to the BMP type II receptor, its downstream actions are specifically mediated by the type I receptor, ALK5, and the Smad2 and Smad3 proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stanniocalcin-1 (STC-1) is a 56 kD homodimeric protein which was originally identified in bony fish, where it regulates calcium/phosphate homeostasis and protects against toxic hypercalcemia. STC-1 was considered unique to fish until the cloning of cDNA for human STC-1 in 1995 and mouse Stc-1 in 1996. STC-1 is conserved through evolution with human and salmon STC-1 sharing 60% identity and 80% similarity. The surprisingly high homology between mammalian and fish STC-1 and the protective actions of STC-1 in terminally differentiated neurons, originally reported by my colleagues, prompted me to further study the role of STC-1 in cell stress and differentiation. One purpose was to determine whether there is an inter-relationship between terminally differentiated cells and STC-1 expression. The study revealed an accumulation of STC-1 in mature megakaryocytes and adipocytes, i.e. postmitotic cells with limited or lost proliferative capacity. Still proliferating uninduced cells were negative for STC-1 mRNA and protein, whereas differentiating cells accumulated STC-1 in their cytoplasm. Interestingly, in liposarcomas the grade inversely correlated with STC-1 expression. Another aim was to study how STC-1 gene expression is regulated. Given that IL-6 is a cytokine with neuroprotective actions, by unknown mechanisms, we examined whether IL-6 regulates STC-1 gene expression. Treatment of human neural Paju cells with IL-6 induced a dose-dependent upregulation of STC-1 mRNA levels. This induction of STC-1 expression by IL-6 occurred mainly through the MAPK signaling pathway. Furthermore, I studied the role of IL-6-mediated STC-1 expression as a mechanism of cytoprotection conferred by hypoxic preconditioning (HOPC) in brain and heart. My findings show that Stc-1 was upregulated in brain after hypoxia treatment. In the brain of IL-6 deficient mice, however, no upregulation of Stc-1 expression was evident. After induced brain injury the STC-1 response in brains of IL-6 transgenic mice, with IL-6 overexpression in astroglial cells, was stronger than in brains of WT mice. These results indicate that IL-6-mediated expression of STC-1 is one molecular mechanism of HOPC-induced tolerance to brain ischemia. The protection conferred by HOPC in heart occurs during a bimodal time course comprising early and delayed preconditioning. Interestingly, my results showed that the expression of Stc-1 in heart was upregulated in a biphasic manner during HOPC. IL-6 deficient mice did not, however, show a similar biphasic manner of Stc-1 upregulation as did WT mice. Instead, only an early upregulation of Stc-1 expression was evident. The results suggest that the upregulation of Stc-1 during the delayed preconditioning is IL-6-dependent. The upregulated expression of Stc-1 during the early preconditioning, however, is only partly IL-6-dependent and possibly also directly mediated by HIF-1. These findings suggest that STC-1 is a pro-survival protein for terminally differentiated cells and that STC-1 expression may in fact be regulated by stress. In addition, I show that STC-1 gene upregulation, mediated in part by IL-6, is a new mechanism of protection conferred by HOPC in brain and heart. Because of its importance for fundamental biological processes, such as differentiation and cytoprotection, STC-1 may have therapeutic implications for management of stroke, neurodegenerative diseases, cancer, and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever expanding growth of the wireless access to the Internet in recent years has led to the proliferation of wireless and mobile devices to connect to the Internet. This has created the possibility of mobile devices equipped with multiple radio interfaces to connect to the Internet using any of several wireless access network technologies such as GPRS, WLAN and WiMAX in order to get the connectivity best suited for the application. These access networks are highly heterogeneous and they vary widely in their characteristics such as bandwidth, propagation delay and geographical coverage. The mechanism by which a mobile device switches between these access networks during an ongoing connection is referred to as vertical handoff and it often results in an abrupt and significant change in the access link characteristics. The most common Internet applications such as Web browsing and e-mail make use of the Transmission Control Protocol (TCP) as their transport protocol and the behaviour of TCP depends on the end-to-end path characteristics such as bandwidth and round-trip time (RTT). As the wireless access link is most likely the bottleneck of a TCP end-to-end path, the abrupt changes in the link characteristics due to a vertical handoff may affect TCP behaviour adversely degrading the performance of the application. The focus of this thesis is to study the effect of a vertical handoff on TCP behaviour and to propose algorithms that improve the handoff behaviour of TCP using cross-layer information about the changes in the access link characteristics. We begin this study by identifying the various problems of TCP due to a vertical handoff based on extensive simulation experiments. We use this study as a basis to develop cross-layer assisted TCP algorithms in handoff scenarios involving GPRS and WLAN access networks. We then extend the scope of the study by developing cross-layer assisted TCP algorithms in a broader context applicable to a wide range of bandwidth and delay changes during a handoff. And finally, the algorithms developed here are shown to be easily extendable to the multiple-TCP flow scenario. We evaluate the proposed algorithms by comparison with standard TCP (TCP SACK) and show that the proposed algorithms are effective in improving TCP behavior in vertical handoff involving a wide range of bandwidth and delay of the access networks. Our algorithms are easy to implement in real systems and they involve modifications to the TCP sender algorithm only. The proposed algorithms are conservative in nature and they do not adversely affect the performance of TCP in the absence of cross-layer information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the proliferation of wireless and mobile devices equipped with multiple radio interfaces to connect to the Internet, vertical handoff involving different wireless access technologies will enable users to get the best of connectivity and service quality during the lifetime of a TCP connection. A vertical handoff may introduce an abrupt, significant change in the access link characteristics and as a result the end-to-end path characteristics such as the bandwidth and the round-trip time (RTT) of a TCP connection may change considerably. TCP may take several RTTs to adapt to these changes in path characteristics and during this interval there may be packet losses and / or inefficient utilization of the available bandwidth. In this thesis we study the behaviour and performance of TCP in the presence of a vertical handoff. We identify the different handoff scenarios that adversely affect TCP performance. We propose several enhancements to the TCP sender algorithm that are specific to the different handoff scenarios to adapt TCP better to a vertical handoff. Our algorithms are conservative in nature and make use of cross-layer information obtained from the lower layers regarding the characteristics of the access links involved in a handoff. We evaluate the proposed algorithms by extensive simulation of the various handoff scenarios involving access links with a wide range of bandwidth and delay. We show that the proposed algorithms are effective in improving the TCP behaviour in various handoff scenarios and do not adversely affect the performance of TCP in the absence of cross-layer information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuroectodermal tissue close to the midbrain hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) regulates cellular survival, patterning and proliferation in the midbrain (Mb) and rhombomere 1 (R1) of the hindbrain. Signaling molecules of the IsO, such as fibroblast growth factor 8 (FGF8) and WNT1 are expressed in distinct bands of cells around the MHB. It has been previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. In the present study, we have compared the gene expression profiles of wild-type and Fgfr1 mutant embryos. We show that the loss of Fgfr1 results in the downregulation of several genes expressed close to the MHB and in the disappearance of gene expression gradients in the midbrain and R1. Our microarray screen identified several previously uncharacterized genes which may participate in the development of midbrain R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1. As Wnt1 expression at the MHB region requires the FGF signaling pathway, WNT target genes, including Drapc1, were also identified in our screen. The microarray data analysis also suggested that the cells next to the midbrain hindbrain boundary express distinct cell cycle regulators. We showed that the cells close to the border appeared to have unique features. These cells proliferate less rapidly than the surrounding cells. Unlike the cells further away from the boundary, these cells express Fgfr1 but not the other FGF receptors. The slowly proliferating boundary cells are necessary for development of the characteristic isthmic constriction. They may also contribute to compartmentalization of this brain region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multipotent stem cells can self-renew and give rise to multiple cell types. One type of mammalian multipotent stem cells are neural stem cells (NSC)s, which can generate neurons, astrocytes and oligodendrocytes. NSCs are likely involved in learning and memory, but their exact role in cognitive function in the developing and adult brain is unclear. We have studied properties of NSCs in fragile X syndrome (FXS), which is the most common form of inherited mental retardation. FXS is caused by the lack of functional fragile X mental retardation protein (FMRP). FMRP is involved in the regulation of postsynaptic protein synthesis in a group I metabotropic glutamate receptor 5 (mGluR5)-dependent manner. In the absence of functional FMRP, the formation of functional synapses is impaired in the forebrain which results in alterations in synaptic plasticity. In our studies, we found that FMRP-deficient NSCs generated more neurons and less glia than control NSCs. The newborn neurons derived from FMRP-deficient NSCs showed an abnormally immature morphology. Furthermore, FMRP-deficient NSCs exhibited aberrant oscillatory Ca2+ responses to glutamate, which were specifically abolished by an antagonist of the mGluR5 receptor. The data suggested alterations in glutamatergic differentiation of FMRP-deficient NSCs and were further supported by an accumulation of cells committed to glutamatergic lineage in the subventricular zone of the embryonic Fmr1-knockout (Fmr1-KO) neocortex. Postnatally, the aberrant cells likely contributed to abnormal formation of the neocortex. The findings suggested a defect in the differentiation of distinct glutamatergic mGluR5 responsive cells in the absence of functional FMRP. Furthermore, we found that in the early postnatal Fmr1-KO mouse brain, the expression of mRNA for regulator of G-protein signalling-4 (RGS4) was decreased which was in line with disturbed G-protein signalling in NSCs lacking FMRP. Brain derived neurotrophic factor (BDNF) promotes neuronal differentiation of NSCs as the absence of FMRP was shown to do. This led us to study the effect of impaired BDNF/TrkB receptor signaling on NSCs by overexpression of TrkB.T1 receptor isoform. We showed that changes in the relative expression levels of the full-length and truncated TrkB isoforms influenced the replication capacity of NSCs. After the differentiation, the overexpression of TrkB.T1 increased neuronal turnover. To summarize, FMRP and TrkB signaling are involved in normal differentiation of NSCs in the developing brain. Since NSCs might have potential for therapeutic interventions in a variety of neurological disorders, our findings may be useful in the design of pharmacological interventions in neurological disorders of learning and memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is a mineralized tissue that enables multiple mechanical and metabolic functions to be carried out in the skeleton. Bone contains distinct cell types: osteoblasts (bone-forming cells), osteocytes (mature osteoblast that embedded in mineralized bone matrix) and the osteoclasts (bone-resorbing cells). Remodelling of bone begins early in foetal life, and once the skeleton is fully formed in young adults, almost all of the metabolic activity is in this form. Bone is constantly destroyed or resorbed by osteoclasts and then replaced by osteoblasts. Many bone diseases, i.e. osteoporosis, also known as bone loss, typically reflect an imbalance in skeletal turnover. The cyclic adenosine monophosphate (cAMP) and the cyclic guanosine monophosphate (cGMP) are second messengers involved in a variety of cellular responses to such extracellular agents as hormones and neurotransmitters. In the hormonal regulation of bone metabolism, i.e. via parathyroid hormone (PTH), parathyroid hormone-related peptide (PTHrp) and prostaglandin E2 signal via cAMP. cAMP and cGMP are formed by adenylate and guanylate cyclases and are degraded by phosphodiesterases (PDEs). PDEs determine the amplitudes of cyclic nucleotide-mediated hormonal responses and modulate the duration of the signal. The activities of the PDEs are regulated by multiple inputs from other signalling systems and are crucial points of cross-talk between the pathways. Food-derived bioactive peptides are reported to express a variety of functions in vivo. The angiotensin-converting enzymes (ACEs) are involved in the regulation of the specific maturation or degradation of a number of mammalian bioactive peptides. The bioactive peptides offer also a nutriceutical and a nutrigenomic aspect to bone cell biology. The aim of this study was to investigate the influence of PDEs and bioactive peptides on the activation and the differentiation of human osteoblast cells. The profile of PDEs in human osteoblast-like cells and the effect of glucocorticoids on the function of cAMP PDEs, were investigated at the mRNA and enzyme levels. The effects of PDEs on bone formation and osteoblast gene expression were determined with chemical inhibitors and siRNAs (short interfering RNAs). The influence of bioactive peptides on osteoblast gene expression and proliferation was studied at the mRNA and cellular levels. This work provides information on how PDEs are involved in the function and the differentiation of osteoblasts. The findings illustrate that gene-specific silencing with an RNA interference (RNAi) method is useful in inhibiting, the gene expression of specific PDEs and further, PDE7 inhibition upregulates several osteogenic genes and increases bALP activity and mineralization in human mesenchymal stem cells-derived osteoblasts. PDEs appear to be involved in a mechanism by which glucocorticoids affect cAMP signaling. This may provide a potential route in the formation of glucocorticoid-induced bone loss, involving the down-regulation of cAMP-PDE. PDEs may play an important role in the regulation of osteoblastic differentiation. Isoleucine-proline-proline (IPP), a bioactive peptide, possesses the potential to increase osteoblast proliferation, differentiation and signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells are responsible for tissue turnover throughout lifespan. Only highly controlled specific environment, the stem cell niche , can sustain undifferentiated stem cell-pool. The balance between maintenance and differentiation is crucial for individual s health: uncontrolled stem cell self-renewal or proliferation can lead to hyperplasia and mutations that further provoke malignant transformation of the cells. On the other hand, uninhibited differentiation may result in diminished stem cell population, which is unable to maintain tissue turnover. The mechanisms that control the switch from maintenance to differentiation in stem cells are not well known. The same mechanisms that direct the self-renewal and proliferation in normal stem cells are likely to be also involved in maintenance of cancer stem cell . Cancer stem cells exhibit stem cell like properties such as self-renewal- and differentiation capacity and they can also regenerate the tumor tissue. In this thesis, I have investigated the effect of classical oncogenes E6/E7 and c-Myc, tumor suppressors p53 and retinoblastoma (pRb) family, and vascular endothelial growth factor (VEGF) subfamily and glial cell line-derived neurothropic factor (GDNF) family ligands on behavior of embryonic neural stem cells (NSCs) and progenitors. The study includes also the characterization of cytoskeletal tumor suppressor neurofibromatosis 2 (NF2) protein merlin and ezrin-radixin-moesin (ERM) protein ezrin expression in neural progenitors cells and their progeny. This study reveals some potential mechanisms regarding to NSCs maintenance. In summary, the studied molecules are able to shift the balance either towards stem cell maintenance or differentiation; tumor suppressor p53 represses whereas E6/E7 oncogenes and c-Myc increase the proportion of self-renewing and proliferating NSCs or progenitors. The data suggests that active MEK-ERK signaling is critical for self-renewal of normal and oncogene expressing NSCs. In addition, the results indicate that expression of cytoskeletal tumor suppressor merlin and ERM protein ezrin in central nervous system (CNS) tissue and progenitors indicates their role in cell differentiation. Furthermore, the data suggests that VEGF-C a factor involved in lymphatic system development, angiogenesis, neovascularization and metastasis but also in maintenance of some neural populations in brain is a novel thropic factor for progenitors in early sympathetic nervous system (SNS). It seems that VEGF-C dose dependently through ERK-pathway supports the proliferation and survival of early sympathetic progenitor cells, and the effect is comparable to that of GDNF family ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.