4 resultados para Valve

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aortic valve stenosis (AS) is an active disease process akin to atherosclerosis, with chronic inflammation, lipid accumulation, extracellular matrix remodeling, fibrosis, and extensive calcification of the valves being characteristic features of the disease. The detailed mechanisms and pathogenesis of AS are still incompletely understood, however, and pharmacological treatments targeted toward components of the disease are not currently available. In this thesis project, my coworkers and I studied stenotic aortic valves obtained from 86 patients undergoing valve replacement for clinically significant AS. Non-stenotic control valves (n=17) were obtained from patients undergoing cardiac transplantation or from organ donors without cardiac disease. We identified a novel inflammatory factor, namely mast cell, in stenotic aortic valves and present evidence showing that this multipotent inflammatory cell may participate in the pathogenesis of AS. Using immunohistochemistry and double immunofluorescence stainings, we found that a considerable number of mast cells accumulate in stenotic valves and, in contrast to normal valves, the mast cells in diseased valves were in an activated state. Moreover, valvular mast cells contained two effective proteases, chymase and cathepsin G, which may participate in adverse remodeling of the valves either by inducing fibrosis (chymase and cathepsin G) or by degrading elastin fibers in the valves (cathepsin G). As chymase and cathepsin G are both capable of generating the profibrotic peptide angiotensin II, we also studied the expression and activity of angiotensin-converting enzyme (ACE) in the valves. Using RT-PCR, imunohistochemistry, and autoradiography, we observed a significant increase in the expression and activity of ACE in stenotic valves. Besides mast cell-derived cathepsin G, aortic valves contained other elastolytic cathepsins (S, K, and V). Using immunohistochemistry, RT-PCR, and fluorometric microassay, we showed that the expression and activity of these cathepsins were augmented in stenotic valves. Furthermore, in stenotic but not in normal valves, we observed a distinctive pattern of elastin fiber degradation and disorganization. Importantly, this characteristic elastin degradation observed in diseased valves could be mimicked by adding exogenous cathepsins to control valves, which initially contained intact elastin fibers. In stenotic leaflets, the collagen/elastin ratio was increased and correlated positively with smoking, a potent AS-accelerating factor. Indeed, cigarette smoke could also directly activate cultured mast cells and fibroblasts. Next, we analyzed the expression and activity of neutral endopeptidase (NEP), which parallels the actions of ACE in degrading bradykinin (BK) and thus inactivates antifibrotic mechanisms in tissues. Real-time RT-PCR and autoradiography revealed NEP expression and activity to be enhanced in stenotic valves compared to controls. Furthermore, both BK receptors (1 and 2) were present in aortic valves and upregulated in stenotic leaflets. Isolated valve myofibroblasts expressed NEP and BK receptors, and their upregulation occurred in response to inflammation. Finally, we observed that the complement system, a source of several proinflammatory mediators and also a potential activator of valvular mast cells, was activated in stenotic valves. Moreover, receptors for the complement-derived effectors C3a and C5a were expressed in aortic valves and in cultured aortic valve myofibroblasts, in which their expression was induced by inflammation as well as by cigarette smoke. In conclusion, our findings revealed several novel mechanisms of inflammation (mast cells and mast cell-derived mediators, complement activation), fibrosis (ACE, chymase, cathepsin G, NEP), and elastin fiber degradation (cathepsins) in stenotic aortic valves and highlighted these effectors as possible pathogenic contributors to AS. These results support the notion of AS as an active process with inflammation and extracellular matrix remodeling as its key features and identify possible new targets for medical therapy in AS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to examine how breathing, swallowing and voicing are affected in different laryngeal disorders. For this purpose, we examined four different patient groups: patients who had undergone total laryngectomy, anterior cervical decompression (ACD), or injection laryngoplasty with autologous fascia (ILAF), and patients with dyspnea during exercise. We studied the problems and benefits related to the automatic speech valve used for the rehabilitation of speech in laryngectomized patients. The device was given to 14 total laryngectomized patients who used the traditional valve especially well. The usefulness of voice and intelligibility of speech were assessed by speech pathologists. The results demonstrated better performance with the traditional valve in both dimensions. Most of the patients considered the automatic valve a helpful additional device but because of heavier breathing and the greater work needed for speech production, it was not suitable as a sole device in speech rehabilitation. Dysphonia and dysphagia are known complications of ACD. These symptoms are caused due to the stretching of tissue needed during the surgery, but the extent and the recovery from them was not well known before our study. We studied two patient groups, an early group with 50 patients who were examined immediately before and after the surgery and a late group with 64 patients who were examined 3 9 months postoperatively. Altogether, 60% reported dysphonia and 69% dysphagia immediately after the operation. Even though dysphagia and dysphonia often appeared after surgery, permanent problems seldom occurred. Six (12 %) cases of transient and two (3 %) permanent vocal cord paresis were detected. In our third study, the long-term results of ILAF in 43 patients with unilateral vocal cord paralysis were examined. The mean follow-up was 5.8 years (range 3 10). Perceptual evaluation demonstrated improved results for voice quality, and videostroboscopy revealed complete or partial glottal closure in 83% of the patients. Fascia showed to be a stable injection material with good vocal results. In our final study we developed a new diagnostic method for exertional laryngeal dyspnea by combining a cardiovascular exercise test with simultaneous fiberoptic observation of the larynx. With this method, it is possible to visualize paradoxal closure of the vocal cords during inspiration, which is a diagnostic criterion for vocal cord dysfunction (VCD). We examined 30 patients referred to our hospital because of suspicion of exercise-induced vocal cord dysfunction (EIVCD). Twenty seven out of thirty patients were able to perform the test. Dyspnea was induced in 15 patients, and of them five had EIVCD and four high suspicion of EIVCD. With our test it is possible to set an accurate diagnosis for exertional laryngeal dyspnea. Moreover, the often seen unnecessary use of asthma drugs among these patients can be avoided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation deals with the design, fabrication, and applications of microscale electrospray ionization chips for mass spectrometry. The microchip consists of microchannel, which leads to a sharp electrospray tip. Microchannel contain micropillars that facilitate a powerful capillary action in the channels. The capillary action delivers the liquid sample to the electrospray tip, which sprays the liquid sample to gas phase ions that can be analyzed with mass spectrometry. The microchip uses a high voltage, which can be utilized as a valve between the microchip and mass spectrometry. The microchips can be used in various applications, such as for analyses of drugs, proteins, peptides, or metabolites. The microchip works without pumps for liquid transfer, is usable for rapid analyses, and is sensitive. The characteristics of performance of the single microchips are studied and a rotating multitip version of the microchips are designed and fabricated. It is possible to use the microchip also as a microreactor and reaction products can be detected online with mass spectrometry. This property can be utilized for protein identification for example. Proteins can be digested enzymatically on-chip and reaction products, which are in this case peptides, can be detected with mass spectrometry. Because reactions occur faster in a microscale due to shorter diffusion lengths, the amount of protein can be very low, which is a benefit of the method. The microchip is well suited to surface activated reactions because of a high surface-to-volume ratio due to a dense micropillar array. For example, titanium dioxide nanolayer on the micropillar array combined with UV radiation produces photocatalytic reactions which can be used for mimicking drug metabolism biotransformation reactions. Rapid mimicking with the microchip eases the detection of possibly toxic compounds in preclinical research and therefore could speed up the research of new drugs. A micropillar array chip can also be utilized in the fabrication of liquid chromatographic columns. Precisely ordered micropillar arrays offer a very homogenous column, where separation of compounds has been demonstrated by using both laser induced fluorescence and mass spectrometry. Because of small dimensions on the microchip, the integrated microchip based liquid chromatography electrospray microchip is especially well suited to low sample concentrations. Overall, this work demonstrates that the designed and fabricated silicon/glass three dimensionally sharp electrospray tip is unique and facilitates stable ion spray for mass spectrometry.