5 resultados para VER2 IAA

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is considered to be an autoimmune disease. The cause of T1D is the destruction of insulin-producing β-cells in the pancreatic islets. The autoimmune nature of T1D is characterized by the presence of autoreactive T-cells and autoantibodies against β-cell molecules. Insulin is the only β-cell-specific autoantigen associated with T1D but the insulin autoantibodies (IAAs) are difficult to measure with proper sensitivity. T-cell assays for detection of autoreactive T-cells, such as insulin-specific T-cells, have also proven to be difficult to perform. The genetic risk of T1D is associated with the HLA gene region but the environmental factors also play an important role. The most studied environmental risk factors of T1D are enteroviruses and cow's milk which both affect the immune system through the gut. One hypothesis is that the insulin-specific immune response develops against bovine insulin in cow's milk during early infancy and later spreads to include human insulin. The aims of this study were to determine whether the separation of immunoglobulin (Ig)G from plasma would improve the sensitivity of the IAA assay and how insulin treatment affects the cellular immune response to insulin in newly diagnosed patients. Furthermore, the effect of insulin concentration in mother's breast milk on the development of antibodies to dietary insulin in the child was examined. Small intestinal biopsies were also obtained from children with T1D to characterize any immunological changes associated with T1D in the gut. The isolation of the IgG fraction from the plasma of T1D patients negative for plasma IAA led to detectable IAA levels that exceeded those in the control children. Thus the isolation of IgG may improve the sensitivity of the IAA assay. The effect of insulin treatment on insulin-specific T-cells was studied by culturing peripheral blood mononuclear cells with insulin. The insulin stimulation induced increased expression of regulatory T-cell markers, such as Foxp3, in those patients treated with insulin than in patients examined before initiating insulin treatment. This finding suggests that insulin treatment in patients with T1D stimulates regulatory T-cells in vivo and this may partly explain the difficulties in measuring autoantigen-specific T-cell responses in recently diagnosed patients. The stimulation of regulatory T-cells by insulin treatment may also explain the remission period often seen after initiating insulin treatment. In the third study we showed that insulin concentration in mother's breast milk correlates inversely with the levels of bovine insulin-specific antibodies in those infants who were exposed to cow's milk proteins in their diet, suggesting that human insulin in breast milk induces tolerance to dietary bovine insulin. However, in infants who later developed T1D-associated autoantibodies, the insulin concentration in their mother's breast milk was increased. This finding may indicate that in those children prone to β-cell autoimmunity, breast milk insulin does not promote tolerance to insulin. In the small intestinal biopsies the presence of several immunological markers were quantified with the RT-PCR. From these markers the expression of the interleukin (IL)-18 cytokine was significantly increased in the gut in patients with T1D compared with children with celiac disease or control children. The increased IL-18 expression lends further support for the hypothesis that the gut immune system is involved in the pathogenesis of T1D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and aims. Type 1 diabetes (T1D), an autoimmune disease in which the insulin producing beta cells are gradually destroyed, is preceded by a prodromal phase characterized by appearance of diabetes-associated autoantibodies in circulation. Both the timing of the appearance of autoantibodies and their quality have been used in the prediction of T1D among first-degree relatives of diabetic patients (FDRs). So far, no general strategies for identifying individuals at increased disease risk in the general population have been established, although the majority of new cases originate in this population. The current work aimed at assessing the predictive role of diabetes-associated immunologic and metabolic risk factors in the general population, and comparing these factors with data obtained from studies on FDRs. Subjects and methods. Study subjects in the current work were subcohorts of participants of the Childhood Diabetes in Finland Study (DiMe; n=755), the Cardiovascular Risk in Young Finns Study (LASERI; n=3475), and the Finnish Type 1 Diabetes Prediction and Prevention Study (DIPP) Study subjects (n=7410). These children were observed for signs of beta-cell autoimmunity and progression to T1D, and the results obtained were compared between the FDRs and the general population cohorts. --- Results and conclusions. By combining HLA and autoantibody screening, T1D risks similar to those reported for autoantibody-positive FDRs are observed in the pediatric general population. Progression rate to T1D is high in genetically susceptible children with persistent multipositivity. Measurement of IAA affinity failed in stratifying the risk assessment in young IAA-positive children with HLA-conferred disease susceptibility, among whom affinity of IAA did not increase during the prediabetic period. Young age at seroconversion, increased weight-for-height, decreased early insulin response, and increased IAA and IA-2A levels predict T1D in young children with genetic disease susceptibility and signs of advanced beta-cell autoimmunity. Since the incidence of T1D continues to increase, efforts aimed at preventing T1D are important, and reliable disease prediction is needed both for intervention trials and for effective and safe preventive therapies in the future. Our observations confirmed that combined HLA-based screening and regular autoantibody measurements reveal similar disease risks in pediatric general population as those seen in prediabetic FDRs, and that risk assessment can be stratified further by studying glucose metabolism of prediabetic subjects. As these screening efforts are feasible in practice, the knowledge now obtained can be exploited while designing intervention trials aimed at secondary prevention of T1D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syftet med studien var att undersöka sambanden mellan de diabetesassocierade autoantikropparna ICA, IAA, GADA, IA-2A och klinisk manifestation, HLA-genotyp, släktanamnes samt demografiska faktorer såsom ålder och kön hos finländska barn under 15 år med nydiagnostiserad typ 1 diabetes. Analyserna baserades på ett utdrag ur det finländska pediatriska diabetesregistret (2257 barn). Antikroppsfrekvenserna fastställdes utgående från halterna i serum. Alla barn HLA-genotypades och indelades i DR3- och DR4-positiva. Småbarnen (?5 år) hade ofta 3-4 positiva antikroppar. Äldre barn hade färre autoantikroppar men en allvarligare metabolisk dekompensering vid diagnostillfället. Diabetisk ketoacidos var vanligare hos flickor. I gruppen med endast en positiv autoantikropp var IA-2A-barnen oftare acidotiska, i övrigt påverkade inte antikroppsprofilen den kliniska bilden. Högriskgenotypen DR4/non-DR3 var associerad med IA-2A, som verkar fungera som en markör för betacelldestruktion. Det omfattande patientmaterialet gav stöd åt tidigare rapporter om samband mellan autoantikroppar och ålder, kön samt genotyp. Den allvarligare metaboliska dekompenseringen hos äldre barn tyder på att de inte diagnostiseras lika snabbt som småbarn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial genus Stenotrophomonas comprises 12 species. They are widely found throughout the environment and particularly S. maltophilia, S. rhizophila and S. pavanii are closely associated with plants. Strains of the most common Stenotrophomonas species, S. maltophilia, promote plant growth and health, degrade natural and man-made pollutants and produce biomolecules of biotechnological and economical value. Many S. maltophilia –strains are also multidrug resistant and can act as opportunistic human pathogens. During an INCO-project (1998-2002) rhizobia were collected from root nodules of the tropical leguminous tree Calliandra calothyrsus Meisn. from several countries in Central America, Africa and New Caledonia. The strains were identified by the N2-group (Helsinki university) and some strains turned out to be members of the genus Stenotrophomonas. Several Stenotrophomonas strains induced white tumor- or nodule-like structures on Calliandra?s roots in plant experiments. The strains could, besides from root nodules, also be isolated from surface sterilized roots and stems. The purpose of my work was to investigate if the Stenotrophomonas strains i) belong to a new Stenotrophomonas species, ii) have the same origin, iii) if there are other differences than colony morphology between phase variations of the same strain, iv) have plant growth-promoting (PGP) activity or other advantageous effects on plants, and v) like rhizobia have ability to induce root nodule formation. The genetic diversity and clustering of the Stenotrophomonas strains were analyzed with AFLP fingerprinting to get indications about their geographical origin. Differences in enzymatic properties and ability to use different carbon and energy sources were tested between the two phases of each strain with commercial API tests for bacterial identification. The ability to infect root hairs and induce root nodule formation was investigated both using plant tests with the host plant Calliandra and PCR amplification of nodA and nodC genes for nodulation. The PGP activity of the strains was tested in vitro mainly with plate methods. The impact on growth, nitrogen content and nodulation in vivo was investigated through greenhouse experiments with the legumes Phaseolus vulgaris and Galega orientalis. Both the genetic and phenotypic diversity among the Stenotrophomonas strains was small, which proposes that they have the same origin. The strains brought about changes on the root hairs of Calliandra and they also increased the amount of root hairs. However, no root nodules were detected. The strains produced IAA, protease and lipase in vitro. They also showed plant a growth-promoting effect on G. orientalis, both alone and together with R. galegae HAMBI 540, and also activated nodulation among efficient rhizobia on P. vulgaris in greenhouse. It requires further research to get a better picture about the mechanisms behind the positive effects. The results in this thesis, however, confirm earlier studies concerning Stenotrophomonas positive impact on plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calendula officinalis is grown widely as an ornamental plant across Europe. It belongs to the large. Asteraceae family. In this study, the aim was to explore the possibilities to use Calendula officinalis as a new model organism for flower development and secondary mechanism studies in Asteraceae. Tissue culture of Calendula officinalis was established using nine different cultivars. Murashige & Skoog (MS) medium with four different combinations of plant growth regulators were tested. Of all these combinations, the medium containing 1mg/l BAP, 0.1 mg/l IAA, and 1mg/l Zeatin achieved highest frequency of adventitious shoot regeneration from hypocotyl and cotyledon explants. Virus-induced gene silencing is a recent developed genetic tool for charactering the gene functions in plants, and extends the range of host plants that are not accessible for Agrobacterium transformation. Here, tobacco rattle virus (TRV)-based VIGS technique was tested in calendula (cv. Single Orange). We used TRV carrying Gerbera hybrid phytoene desaturase (PDS) gene fragment to induce PDS silencing in calendula. Vacuum infiltration and syringe infiltration methods both resulted in photo-bleaching phenotypes in leaves, bracts and petals. Loss-of-function phenotypes occurred on calendula 13 days post-infiltration. In conclusion, the data indicates that calendula explants can be regenerated through tissue culture which is a prerequisite for development of stable transformation methods. However, further optimization is still needed to improve the frequency. In addition, VIGS was applied to silence PDS marker gene expression indicating that this method has potential for gene functional studies in future.