5 resultados para Urban Communities

em Helda - Digital Repository of University of Helsinki


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuing urbanization is a crucial driver of land transformation, having widespread impacts on virtually all ecosystems. Terrestrial ecosystems, including disturbed ones, are dependent on soils, which provide a multitude of ecosystem services. As soils are always directly and/or indirectly impacted through land transformation, land cover change causes soil change. Knowledge of ecosystem properties and functions in soils is increasing in importance as humans continue to concentrate into already densely-populated areas. Urban soils often have hampered functioning due to various disturbances resulting from human activity. Innovative solutions are needed to bring the lacking ecosystem services and quality of life to these urban environments. For instance, the ecosystem services of the urban green infrastructure may be substantially improved through knowledge of their functional properties. In the research forming this thesis, the impacts of four plant species (Picea abies, Calluna vulgaris, Lotus corniculatus and Holcus lanatus) on belowground biota and regulatory ecosystem services were investigated in two different urban soil types. The retention of inorganic nitrogen and phosphorus in the plant-soil system, decomposition of plant litter, primary production, and the degradation of polycyclic aromatic hydrocarbons (PAHs) were examined in the field and under laboratory conditions. The main objective of the research was to determine whether the different plant species (representing traits with varying litter decomposability) will give rise to dissimilar urban belowground communities with differing ecological functions. Microbial activity as well as the abundance of nematodes and enchytraeid worm biomass was highest below the legume L. corniculatus. L. corniculatus and the grass H. lanatus, producing labile or intermediate quality litter, enhanced the proportion of bacteria in the soil rhizosphere, while the recalcitrant litter-producing shrub C. vulgaris and the conifer P. abies stimulated the growth of fungi. The loss of nitrogen from the plant-soil system was small for H. lanatus and the combination of C. vulgaris + P. abies, irrespective of their energy channel composition. These presumably nitrogen-conservative plant species effectively diminished the leaching losses from the plant-soil systems with all the plant traits present. The laboratory experiment revealed a difference in N allocation between the plant traits: C. vulgaris and P. abies sequestered significantly more N in aboveground shoots in comparison to L. corniculatus and H. Lanatus. Plant rhizosphere effects were less clear for phosphorus retention, litter decomposition and the degradation of PAH compounds. This may be due to the relatively short experimental durations, as the maturation of the plant-soil system is likely to take a considerably longer time. The empirical studies of this thesis demonstrated that the soil communities rapidly reflect changes in plant coverage, and this has consequences for the functionality of soils. The energy channel composition of soils can be manipulated through plants, which was also supported by the results of the separate meta-analysis conducted in this thesis. However, further research is needed to understand the linkages between the biological community properties and ecosystem services in strongly human-modified systems.