2 resultados para Turing

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to certain arguments, computation is observer-relative either in the sense that many physical systems implement many computations (Hilary Putnam), or in the sense that almost all physical systems implement all computations (John Searle). If sound, these arguments have a potentially devastating consequence for the computational theory of mind: if arbitrary physical systems can be seen to implement arbitrary computations, the notion of computation seems to lose all explanatory power as far as brains and minds are concerned. David Chalmers and B. Jack Copeland have attempted to counter these relativist arguments by placing certain constraints on the definition of implementation. In this thesis, I examine their proposals and find both wanting in some respects. During the course of this examination, I give a formal definition of the class of combinatorial-state automata , upon which Chalmers s account of implementation is based. I show that this definition implies two theorems (one an observation due to Curtis Brown) concerning the computational power of combinatorial-state automata, theorems which speak against founding the theory of implementation upon this formalism. Toward the end of the thesis, I sketch a definition of the implementation of Turing machines in dynamical systems, and offer this as an alternative to Chalmers s and Copeland s accounts of implementation. I demonstrate that the definition does not imply Searle s claim for the universal implementation of computations. However, the definition may support claims that are weaker than Searle s, yet still troubling to the computationalist. There remains a kernel of relativity in implementation at any rate, since the interpretation of physical systems seems itself to be an observer-relative matter, to some degree at least. This observation helps clarify the role the notion of computation can play in cognitive science. Specifically, I will argue that the notion should be conceived as an instrumental rather than as a fundamental or foundational one.