20 resultados para Thermocompression bonding

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parenthood experience of a mother with a disabled child and the meaning of the social environment and parent-professional partnerships The importance of parental guidance when a family has a child with a disability or autism has been pointed out by several studies. The present research was based on the premise that by supporting the mother we can help the whole family to cope better and the professionals in day care or at school are able to support parents. The starting point was the subjective experience, which is also the central focus of the phenomenological method. The purpose of this study was firstly to describe the experience of the mother and the dialogue between mother and educational professionals. Secondly it was the task of this research to discover what kind of support and information the mother obtains from her social environment. At the background of this study there was the ecological theory of Bronfenbrenner, the ecocultural approach by Gallimore and the interactive examination of family that take into consideration the whole environment and personal situation. The research data was collected by interviewing the mothers, the day care personnel and the teachers at school. In this research there were a total of 32 interviews and 24 informants: 10 mothers who have a child with a disability and/or autism, 8 professionals in day care and 6 teachers at school. This study was longitudinal because the same mothers were interviewed twice, first in 1998 and then after five years in 2003. It was thus possible to get information on whether their life situation had changed and the nature of those changes. The data of this study was analysed by the method of phenomenological psychology that was applied for this study. The findings indicated that all mothers had experienced many complicated emotional feelings such as: anger, mourning, fear and sadness as well as love and bonding. It can be said that several human feelings existed at the same time. Mothers experienced that the support of the social environment, for example, relatives, families in the same situation and persons taking care of the child had significant meaning for their coping. However the life situation among the mothers varied. Mostly mothers received valuable support for their parenthood and they have adopted a strong emotion for manage ring. Mothers with an autistic child were more stressed than mothers with a mentally retarded child. A few mothers had numerous problems with taking care of their child and they did not get enough help. Same mothers were very exhausted too and the situation was quite the same after five years, when their child was teenager. All mothers said that after starting school the support for the family had significally diminished. Mothers said that dialogue with teacher got on without problems, but there were meetings seldom, so it wasn´t possible to get enough support for their parenthood. Keywords: parenthood, motherhood, disability, early special education, family-centred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-ethanol mixtures are commonly used in industry and house holds. However, quite surprisingly their molecular-level structure is still not completely understood. In particular, there is evidence that the local intermolecular geometries depend significantly on the concentration. The aim of this study was to gain information on the molecular-level structures of water-ethanol mixtures by two computational methods. The methods are classical molecular dynamics (MD), where the movement of molecules can be studied, and x-ray Compton scattering, in which the scattering cross section is sensitive to the electron momentum density. Firstly, the water-ethanol mixtures were studied with MD simulations, with the mixture concentration ranging from 0 to 100%. For the simulations well-established force fields were used for the water and ethanol molecules (TIP4P and OPLS-AA, respectively). Moreover, two models were used for ethanol, rigid and non-rigid. In the rigid model the intramolecular bond lengths are fixed, whereas in the non-rigid model the lengths are determined by harmonic potentials. Secondly, mixtures with three different concentrations employing both ethanol models were studied by calculating the experimentally observable x-ray quantity, the Compton profile. In the MD simulations a slight underestimation in the density was observed as compared to experiment. Furthermore, a positive excess of hydrogen bonding with water molecules and a negative one with ethanol was quantified. Also, the mixture was found more structured when the ethanol concentration was higher. Negligible differences in the results were found between the two ethanol models. In contrast, in the Compton scattering results a notable difference between the ethanol models was observed. For the rigid model the Compton profiles were similar for all the concentrations, but for the non-rigid model they were distinct. This leads to two possibilities of how the mixing occurs. Either the mixing is similar in all concentrations (as suggested by the rigid model) or the mixing changes for different concentrations (as suggested by the non-rigid model). Either way, this study shows that the choice of the force field is essential in the microscopic structure formation in the MD simulations. When the sources of uncertainty in the calculated Compton profiles were analyzed, it was found that more statistics needs to be collected to reduce the statistical uncertainty in the final results. The obtained Compton scattering results can be considered somewhat preliminary, but clearly indicative of the behaviour of the water-ethanol mixtures when the force field is modified. The next step is to collect more statistics and compare the results with experimental data to decide which ethanol model describes the mixture better. This way, valuable information on the microscopic structure of water-ethanol mixtures can be found. In addition, information on the force fields in the MD simulations and on the ability of the MD simulations to reproduce the microscopic structure of binary liquids is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ALICE (A Large Ion Collider Experiment) is an experiment at CERN (European Organization for Nuclear Research), where a heavy-ion detector is dedicated to exploit the unique physics potential of nucleus-nucleus interactions at LHC (Large Hadron Collider) energies. In a part of that project, 716 so-called type V4 modules were assembles in Detector Laboratory of Helsinki Institute of Physics during the years 2004 - 2006. Altogether over a million detector strips has made this project the most massive particle detector project in the science history of Finland. One ALICE SSD module consists of a double-sided silicon sensor, two hybrids containing 12 HAL25 front end readout chips and some passive components, such has resistors and capacitors. The components are connected together by TAB (Tape Automated Bonding) microcables. The components of the modules were tested in every assembly phase with comparable electrical tests to ensure the reliable functioning of the detectors and to plot the possible problems. The components were accepted or rejected by the limits confirmed by ALICE collaboration. This study is concentrating on the test results of framed chips, hybrids and modules. The total yield of the framed chips is 90.8%, hybrids 96.1% and modules 86.2%. The individual test results have been investigated in the light of the known error sources that appeared during the project. After solving the problems appearing during the learning-curve of the project, the material problems, such as defected chip cables and sensors, seemed to induce the most of the assembly rejections. The problems were typically seen in tests as too many individual channel failures. Instead, the bonding failures rarely caused the rejections of any component. One sensor type among three different sensor manufacturers has proven to have lower quality than the others. The sensors of this manufacturer are very noisy and their depletion voltage are usually outside of the specification given to the manufacturers. Reaching 95% assembling yield during the module production demonstrates that the assembly process has been highly successful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of the research was to illustrate chemistry matriculation examination questions as a summative assessment tool, and represent how the questions have evolved over the years. Summative assessment and its various test item classifications, Finnish goal-oriented curriculum model, and Bloom’s Revised Taxonomy of Cognitive Objectives formed the theoretical framework for the research. The research data consisted of 257 chemistry questions from 28 matriculation examinations between 1996 and 2009. The analysed test questions were formulated according to the national upper secondary school chemistry curricula 1994, and 2003. Qualitative approach and theory-driven content analysis method were employed in the research. Peer review was used to guarantee the reliability of the results. The research was guided by the following questions: (a) What kinds of test item formats are used in chemistry matriculation examinations? (b) How the fundamentals of chemistry are included in the chemistry matriculation examination questions? (c) What kinds of cognitive knowledge and skills do the chemistry matriculation examination questions require? The research indicates that summative assessment was used diversely in chemistry matriculation examinations. The tests included various test item formats, and their combinations. The majority of the test questions were constructed-response items that were either verbal, quantitative, or experimental questions, symbol questions, or combinations of the aforementioned. The studied chemistry matriculation examinations seldom included selected-response items that can be either multiple-choice, alternate choice, or matching items. The relative emphasis of the test item formats differed slightly depending on whether the test was a part of an extensive general studies battery of tests in sciences and humanities, or a subject-specific test. The classification framework developed in the research can be applied in chemistry and science education, and also in educational research. Chemistry matriculation examinations are based on the goal-oriented curriculum model, and cover relatively well the fundamentals of chemistry included in the national curriculum. Most of the test questions related to the symbolism of chemical equation, inorganic and organic reaction types and applications, the bonding and spatial structure in organic compounds, and stoichiometry problems. Only a few questions related to electrolysis, polymers, or buffer solutions. None of the test questions related to composites. There were not any significant differences in the emphasis between the tests formulated according to the national curriculum 1994 or 2003. Chemistry matriculation examinations are cognitively demanding. The research shows that the majority of the test questions require higher-order cognitive skills. Most of the questions required analysis of procedural knowledge. The questions that only required remembering or processing metacognitive knowledge, were not included in the research data. The required knowledge and skill level varied slightly between the test questions in the extensive general studies battery of tests in sciences and humanities, and subject-specific tests administered since 2006. The proportion of the Finnish chemistry matriculation examination questions requiring higher-order cognitive knowledge and skills is very large compared to what is discussed in the research literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work the methods of relativistic quantum chemistry have been applied to a number of small systems containing heavy elements, for which relativistic effects are important. First, a thorough introduction of the methods used is presented. This includes some of the general methods of computational chemistry and a special section dealing with how to include the effects of relativity in quantum chemical calculations. Second, after this introduction the results obtained are presented. Investigations on high-valent mercury compounds are presented and new ways to synthesise such compounds are proposed. The methods described were applied to certain systems containing short Pt-Tl contacts. It was possible to explain the interesting bonding situation in these compounds. One of the most common actinide compounds, uranium hexafluoride was investigated and a new picture of the bonding was presented. Furthermore the rareness of uranium-cyanide compounds was discussed. In a foray into the chemistry of gold, well known for its strong relativistic effects, investigations on different gold systems were performed. Analogies between Au$^+$ and platinum on one hand and oxygen on the other were found. New systems with multiple bonds to gold were proposed to experimentalists. One of the proposed systems was spectroscopically observed shortly afterwards. A very interesting molecule, which was theoretically predicted a few years ago is WAu$_{12}$. Some of its properties were calculated and the bonding situation was discussed. In a further study on gold compounds it was possible to explain the substitution pattern in bis[phosphane-gold(I)] thiocyanate complexes. This is of some help to experimentalists as the systems could not be crystallised and the structure was therefore unknown. Finally, computations on one of the heaviest elements in the periodic table were performed. Calculation on compounds containing element 110, darmstadtium, showed that it behaves similarly as its lighter homologue platinum. The extreme importance of relativistic effects for these systems was also shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of intermolecular interactions to chemistry, physics, and biology is difficult to overestimate. Without intermolecular forces, condensed phase matter could not form. The simplest way to categorize different types of intermolecular interactions is to describe them using van der Waals and hydrogen bonded (H-bonded) interactions. In the H-bond, the intermolecular interaction appears between a positively charged hydrogen atom and electronegative fragments and it originates from strong electrostatic interactions. H-bonding is important when considering the properties of condensed phase water and in many biological systems including the structure of DNA and proteins. Vibrational spectroscopy is a useful tool for studying complexes and the solvation of molecules. Vibrational frequency shift has been used to characterize complex formation. In an H-bonded system A∙∙∙H-X (A and X are acceptor and donor species, respectively), the vibrational frequency of the H-X stretching vibration usually decreases from its value in free H-X (red-shift). This frequency shift has been used as evidence for H-bond formation and the magnitude of the shift has been used as an indicator of the H-bonding strength. In contrast to this normal behavior are the blue-shifting H-bonds, in which the H-X vibrational frequency increases upon complex formation. In the last decade, there has been active discussion regarding these blue-shifting H-bonds. Noble-gases have been considered inert due to their limited reactivity with other elements. In the early 1930 s, Pauling predicted the stable noble-gas compounds XeF6 and KrF6. It was not until three decades later Neil Bartlett synthesized the first noble-gas compound, XePtF6, in 1962. A renaissance of noble-gas chemistry began in 1995 with the discovery of noble-gas hydride molecules at the University of Helsinki. The first hydrides were HXeCl, HXeBr, HXeI, HKrCl, and HXeH. These molecules have the general formula of HNgY, where H is a hydrogen atom, Ng is a noble-gas atom (Ar, Kr, or Xe), and Y is an electronegative fragment. At present, this class of molecules comprises 23 members including both inorganic and organic compounds. The first and only argon-containing neutral chemical compound HArF was synthesized in 2000 and its properties have since been investigated in a number of studies. A helium-containing chemical compound, HHeF, was predicted computationally, but its lifetime has been predicted to be severely limited by hydrogen tunneling. Helium and neon are the only elements in the periodic table that do not form neutral, ground state molecules. A noble-gas matrix is a useful medium in which to study unstable and reactive species including ions. A solvated proton forms a centrosymmetric NgHNg+ (Ng = Ar, Kr, and Xe) structure in a noble-gas matrix and this is probably the simplest example of a solvated proton. Interestingly, the hypothetical NeHNe+ cation is isoelectronic with the water-solvated proton H5O2+ (Zundel-ion). In addition to the NgHNg+ cations, the isoelectronic YHY- (Y = halogen atom or pseudohalogen fragment) anions have been studied with the matrix-isolation technique. These species have been known to exist in alkali metal salts (YHY)-M+ (M = alkali metal e.g. K or Na) for more than 80 years. Hydrated HF forms the FHF- structure in aqueous solutions, and these ions participate in several important chemical processes. In this thesis, studies of the intermolecular interactions of HNgY molecules and centrosymmetric ions with various species are presented. The HNgY complexes show unusual spectral features, e.g. large blue-shifts of the H-Ng stretching vibration upon complexation. It is suggested that the blue-shift is a normal effect for these molecules, and that originates from the enhanced (HNg)+Y- ion-pair character upon complexation. It is also found that the HNgY molecules are energetically stabilized in the complexed form, and this effect is computationally demonstrated for the HHeF molecule. The NgHNg+ and YHY- ions also show blue-shifts in their asymmetric stretching vibration upon complexation with nitrogen. Additionally, the matrix site structure and hindered rotation (libration) of the HNgY molecules were studied. The librational motion is a much-discussed solid state phenomenon, and the HNgY molecules embedded in noble-gas matrices are good model systems to study this effect. The formation mechanisms of the HNgY molecules and the decay mechanism of NgHNg+ cations are discussed. A new electron tunneling model for the decay of NgHNg+ absorptions in noble-gas matrices is proposed. Studies of the NgHNg+∙∙∙N2 complexes support this electron tunneling mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even though cellulose is the most abundant polymer on Earth, its utilisation has some limitations regarding its efficient use in the production of bio-based materials. It is quite clear from statistics that only a relatively small fraction of cellulose is used for the production of commodity materials and chemicals. This fact was the driving force in our research into understanding, designing, synthesising and finding new alternative applications for this well-known but underused biomaterial. This thesis focuses on the developing advanced materials and products from cellulose by using novel approaches. The aim of this study was to investigate and explore the versatility of cellulose as a starting material for the synthesis of cellulose-based materials, to introduce new synthetic methods for cellulose modification, and to widen the already existing synthetic approaches. Due to the insolubility of cellulose in organic solvents and in water, ionic liquids were applied extensively as the reaction media in the modification reactions. Cellulose derivatives were designed and fine-tuned to obtain desired properties. This was done by altering the inherent hydrogen bond network by introducing different substituents. These substituents either prevented spontaneous formation of hydrogen bonding completely or created new interactions between the cellulose chains. This enabled spontaneous self-assembly leading to supramolecular structures. It was also demonstrated that the material properties of cellulose can be modified even those molecules with a low degree of substitution when highly hydrophobic films and aerogels were prepared from fatty acid derivatives of nanocellulose. Development towards advanced cellulose-based materials was demostrated by synthesising chlorophyllcellulose derivatives that showed potential in photocurrent generation systems. In addition, liquid crystalline cellulose derivatives prepared in this study, showed to function as UV-absorbers in paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare-gas chemistry is of growing interest, and the recent advances include the "insertion" of a Xe atom into OH and water in the rare-gas hydrides HXeO and HXeOH. The insertion of Xe atoms into the H-C bonds of hydrocarbons was also demonstrated for HXeCC, HXeCCH and HXeCCXeH, the last of which was the first rare-gas hydride containing two rare-gas atoms. We describe the preparation and characterization of a new rare-gas compound, HXeOXeH. HXeOXeH was prepared in solid xenon by photolysis of a suitable precursor, for example water, and subsequent mobilization of the photoproducts. The experimental identification was carried out by FTIR spectroscopy, isotopic substitution and by use of various precursors. The photolytical and thermal stability of the new rare-gas hydride was also studied. The experimental work was supported by extensive quantum chemical calculations provided by our co-workers. HXeOXeH forms in a cryogenic xenon matrix from neutral O and H atoms in a two-step diffusion-controlled process involving HXeO as an intermediate [reactions (1) and (2)]. This formation mechanism is unique in that a rare-gas hydride is formed from another rare-gas hydride. H + Xe + O → HXeO (1) HXeO + Xe + H → HXeOXeH (2) Similarly to other rare-gas hydrides, HXeOXeH has a strongly IR-active H-Xe stretching vibration, allowing its spectral detection at 1379.3 cm-1. HXeOXeH is a very high-energy metastable species, yet thermally more stable than many other rare-gas hydrides. The calculated bending barrier of 0.57 eV, is not enough to explain the observed stability, and HXeOXeH might be affected by additional stabilization from the solid xenon environment. Chemical bonding between xenon and environmentally abundant species like water is of particular importance due to the “missing-xenon” problem. The relatively high thermal stability of HXeOXeH compared to other oxygen containing rare-gas compounds is relevant in this respect. Our work also raises the possibility of polymeric (–Xe–O)n networks, similarly to the computationally studied (XeCC)n polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study analyses personal relationships linking research to sociological theory on the questions of the social bond and on the self as social. From the viewpoint of disruptive life events and experiences, such as loss, divorce and illness, it aims at understanding how selves are bound to their significant others as those specific people ‘close or otherwise important’ to them. Who form the configurations of significant others? How do different bonds respond in disruptions and how do relational processes unfold? How is the embeddedness of selves manifested in the processes of bonding, on the one hand, and in the relational formation of the self, on the other? The bonds are analyzed from an anti-categorical viewpoint based on personal citations of significance as opposed to given relationship categories, such as ‘family’ or ‘friendship’ – the two kinds of relationships that in fact are most frequently significant. The study draws from analysis of the personal narratives of 37 Finnish women and men (in all 80 interviews) and their entire configurations of those specific people who they cite as ‘close or otherwise important’. The analysis stresses the subjective experiences, while also investigating the actualized relational processes and configurations of all personal relationships with certain relationship histories embedded in micro-level structures. The research is based on four empirical sub-studies of personal relationships and a summary discussing the questions of the self and social bond. Discussion draws from G. H. Mead, C. Cooley, N. Elias, T. Scheff, G. Simmel and the contributors of ‘relational sociology’. Sub-studies analyse bonds to others from the viewpoint of biographical disruption and re-configuration of significant others, estranged family bonds, peer support and the formation of the most intimate relationships into exclusive and inclusive configurations. All analyses examine the dialectics of the social and the personal, asking how different structuring mechanisms and personal experiences and negotiations together contribute to the unfolding of the bonds. The summary elaborates personal relationships as social bonds embedded in wider webs of interdependent people and social settings that are laden with cultural expectations. Regarding the question of the relational self, the study proposes both bonding and individuality as significant. They are seen as interdependent phases of the relationality of the self. Bonding anchors the self to its significant relationships, in which individuality is manifested, for example, in contrasting and differentiating dynamics, but also in active attempts to connect with others. Individuality is not a fixed quality of the self, but a fluid and interdependent phase of the relational self. More specifically, it appears in three formats in the flux of relational processes: as a sense of unique self (via cultivation of subjective experiences), as agency and as (a search for) relative autonomy. The study includes an epilogue addressing the ambivalence between the social expectation of individuality in society and the bonded reality of selves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of the thesis are (1) to present a systematic evaluation of generation and its relevance as a sociological concept, (2) to reflect on how generational consciousness, i.e. generation as an object of collective identification that has social significance, can emerge and take shape, (3) to analyze empirically the generational experiences and consciousness of one specific generation, namely Finnish baby boomers (b. 1945 1950). The thesis contributes to the discussion on the social (as distinct from its genealogical) meaning of the concept of generation, launched by Karl Mannheim s classic Das Problem der Generationen (1928), in which the central idea is that a certain group of people is bonded together by a shared experience and that this bonding can result in a distinct self-consciousness. The thesis is comprised of six original articles and an extensive summarizing chapter. In the empirical articles, the baby boomers are studied on the basis of nationally representative survey data (N = 2628) and narrative life-story interviews (N = 38). In the article that discusses the connection of generations and social movements, the analysis is based on the member survey of Attac Finland (N = 1096). Three main themes were clarified in the thesis. (1) In the social sense the concept of generation is a modern, problematic, and ultimately a political concept. It served the interests of the intellectuals who developed the concept in the early 20th century and provided them, as an alternative to the concept of social class, a new way of think about social change and progress. The concept of generation is always coupled with the concept of Zeitgeist or some other controversial way of defining what is essential, i.e. what creates generations, in a given culture. Thus generation is, as a product of definition and classification struggles, a contested concept. The concept also clearly implies elitist connotations; the idea of some kind of vanguard (the elite) that represents an entire generation by proclaiming itself as its spokesman automatically creates a counterpart, namely the others in the peer group who are thought to be represented (the masses). (2) Generational consciousness cannot emerge as a result of any kind of automatic process or endogenously; it must be made. There has to be somebody who represents the generation in order for that generation to exist in people s minds and as an object of identification; generational experiences and their meanings must be articulated. Hence, social generations are, in a fundamental manner, discursively constructed. The articulations of generational experiences (speeches, writings, manifests, labels etc.) can be called as the discursive dimension of social generations, and through this notion, how public discourse shapes people s generational consciousness can be seen. Another important element in the process is collective memory, as generational consciousness often takes form only retrospectively. (3) Finnish baby boomers are not a united or homogeneous generation but are divided into many smaller sections with specific generational experiences and consciousnesses. The content of the generational consciousness of the baby boomers is heavily politically charged. A salient dividing line inside the age group is formed by individual attitudes towards so-called 1960s radicalism. Identification with the 1960s generation functions today as a positive self-definition of a certain small leftist elite group, and the values and characteristics usually connected with the idea of the 1960s generation do not represent the whole age group. On the contrary, among some of the members of the baby boomers, the generational identification is still directed by the experience of how traditional values were disgraced in the 1960s. As objects of identification, the neutral term baby boomers and the charged 1960s generation are totally different things, and therefore they should not be used as synonyms. Although the significance of the group of the 1960s generation is often overestimated, they are however special with respect to generational consciousness because they have presented themselves as the voice of the entire generation. Their generational interpretations have spread through the media with the help of certain iconic images of the generation insomuch that 1960s radicalism has become an indirect generational experience for other parts of the baby boom cohort as well.