18 resultados para Textured insole, Standing balance, Aging, Somatosensory, Postural sway

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, effects of stimulus repetition and change in a continuous stimulus stream on the processing of somatosensory information in the human brain were studied. Human scalp-recorded somatosensory event-related potentials (ERPs) and magnetoencephalographic (MEG) responses rapidly diminished with stimulus repetition when mechanical or electric stimuli were applied to fingers. On the contrary, when the ERPs and multi-unit a ctivity (MUA) were directly recorded from the primary (SI) and secondary (SII) somatosensory cortices in a monkey, there was no marked decrement in the somatosensory responses as a function of stimulus repetition. These results suggest that this rate effect is not due to the response diminution in the SI and SII cortices. Obviously the responses to the first stimulus after a long "silent" period are nhanced due to unspecific initial orientation, originating in more broadly distributed and/or deeper neural structures, perhaps in the prefrontal cortices. With fast repetition rates not only the late unspecific but also some early specific somatosensory ERPs were diminished in amplitude. The fast decrease of the ERPs as a function of stimulus repetition is mainly due to the disappearance of the orientation effect and with faster repetition rates additively due to stimulus specific refractoriness. A sudden infrequent change in the continuous stimulus stream also enhanced somatosensory MEG responses to electric stimuli applied to different fingers. These responses were quite similar to those elicited by the deviant stimuli alone when the frequent standard stimuli were omitted. This enhancement was obviously due to the release from refractoriness because the neural structures generating the responses to the infrequent deviants had more time to recover from the refractoriness than the respective structures for the standards. Infrequent deviant mechanical stimuli among frequent standard stimuli also enhanced somatosensory ERPs and, in addition, they elicited a new negative wave which did not occur in the deviants-alone condition. This extra negativity could be recorded to deviations in the stimulation site and in the frequency of the vibratory stimuli. This response is probably a somatosensory analogue of the auditory mismatch negativity (MMN) which has been suggested to reflect a neural mismatch process between the sensory input and the sensory memory trace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils represent a remarkable stock of carbon, and forest soils are estimated to hold half of the global stock of soil carbon. Topical concern about the effects of climate change and forest management on soil carbon as well as practical reporting requirements set by climate conventions have created a need to assess soil carbon stock changes reliably and transparently. The large spatial variability of soil carbon commensurate with relatively slow changes in stocks hinders the assessment of soil carbon stocks and their changes by direct measurements. Models therefore widely serve to estimate carbon stocks and stock changes in soils. This dissertation aimed to develop the soil carbon model YASSO for upland forest soils. The model was aimed to take into account the most important processes controlling the decomposition in soils, yet remain simple enough to ensure its practical applicability in different applications. The model structure and assumptions were presented and the model parameters were defined with empirical measurements. The model was evaluated by studying the sensitivities of the model results to parameter values, by estimating the precision of the results with an uncertainty analysis, and by assessing the accuracy of the model by comparing the predictions against measured data and to the results of an alternative model. The model was applied to study the effects of intensified biomass extraction on the forest carbon balance and to estimate the effects of soil carbon deficit on net greenhouse gas emissions of energy use of forest residues. The model was also applied in an inventory based method to assess the national scale forest carbon balance for Finland’s forests from 1922 to 2004. YASSO managed to describe sufficiently the effects of both the variable litter and climatic conditions on decomposition. When combined with the stand models or other systems providing litter information, the dynamic approach of the model proved to be powerful for estimating changes in soil carbon stocks on different scales. The climate dependency of the model, the effects of nitrogen on decomposition and forest growth as well as the effects of soil texture on soil carbon stock dynamics are areas for development when considering the applicability of the model to different research questions, different land use types and wider geographic regions. Intensified biomass extraction affects soil carbon stocks, and these changes in stocks should be taken into account when considering the net effects of forest residue utilisation as energy. On a national scale, soil carbon stocks play an important role in forest carbon balances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forest vegetation takes up atmospheric carbon dioxide (CO2) in photosynthesis. Part of the fixed carbon is released back into the atmosphere during plant respiration but a substantial part is stored as plant biomass, especially in the stems of trees. Carbon also accumulates in the soil as litter and via the roots. CO2 is released into the atmosphere from these carbon stocks in the decomposition of dead biomass. Carbon balance of a forest stand is the difference between the CO2 uptake and CO2 efflux. This study quantifies and analyses the dynamics of carbon balance and component CO2 fluxes in four Southern Finnish Scots pine stands that covered the typical economic rotation time of 80 years. The study was based on direct flux measurements with chambers and eddy covariance (EC), and modelling of component CO2 fluxes. The net CO2 exchange of the stand was partitioned into component fluxes: photosynthesis of trees and ground vegetation, respiration of tree foliage and stems, and CO2 efflux from the soil. The relationships between the component fluxes and the environmental factors (light, temperature, atmospheric CO2, air humidity and soil moisture) were studied with mathematical modelling. The annual CO2 balance varied from a source of about 400 g C/m2 at a recently clearcut site to net CO2 uptake of 200 300 g C/m2 in a middle-aged (40-year-old) and a mature (75-year-old) stand. A 12-year-old sapling site was at the turning point from source to a sink of CO2. In the middle-aged stand, photosynthetic production was dominated by trees. Under closed pine canopies, ground vegetation accounted for 10 20% of stand photosynthesis whereas at the open sites the proportion and also the absolute photosynthesis of ground vegetation was much higher. The aboveground respiration was dominated by tree foliage which accounted for one third of the ecosystem respiration. Rate of wood respiration was in the order of 10% of total ecosystem respiration. CO2 efflux from the soil dominated the ecosystem respiratory fluxes in all phases of stand development. Instantaneous and delayed responses to the environmental driving factors could predict well within-year variability in photosynthetic production: In the short term and during the growing season photosynthesis follows primarily light while the seasonal variation is more strongly connected to temperature. The temperature relationship of the annual cycle of photosynthesis was found to be almost equal in the southern boreal zone and at the timberline in the northern boreal zone. The respiratory fluxes showed instantaneous and seasonal temperature relationships but they could also be connected to photosynthesis at an annual timescale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until recently, objective investigation of the functional development of the human brain in vivo was challenged by the lack of noninvasive research methods. Consequently, fairly little is known about cortical processing of sensory information even in healthy infants and children. Furthermore, mechanisms by which early brain insults affect brain development and function are poorly understood. In this thesis, we used magnetoencephalography (MEG) to investigate development of cortical somatosensory functions in healthy infants, very premature infants at risk for neurological disorders, and adolescents with hemiplegic cerebral palsy (CP). In newborns, stimulation of the hand activated both the contralateral primary (SIc) and secondary somatosensory cortices (SIIc). The activation patterns differed from those of adults, however. Some of the earliest SIc responses, constantly present in adults, were completely lacking in newborns and the effect of sleep stage on SIIc responses differed. These discrepancies between newborns and adults reflect the still developmental stage of the newborns’ somatosensory system. Its further maturation was demonstrated by a systematic transformation of the SIc response pattern with age. The main early adult­like components were present by age two. In very preterm infants, at term age, the SIc and SIIc were activated at similar latencies as in healthy fullterm newborns, but the SIc activity was weaker in the preterm group. The SIIc response was absent in four out of the six infants with brain lesions of the underlying hemisphere. Determining the prognostic value of this finding remains a subject for future studies, however. In the CP adolescents with pure subcortical lesions, contrasting their unilateral symptoms, the SIc responses of both hemispheres differed from those of controls: For example the distance between SIc representation areas for digits II and V was shorter bilaterally. In four of the five CP patients with cortico­subcortical brain lesions, no normal early SIc responses were evoked by stimulation of the palsied hand. The varying differences in neuronal functions, underlying the common clinical symptoms, call for investigation of more precisely designed rehabilitation strategies resting on knowledge about individual functional alterations in the sensorimotor networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this Thesis was to evaluate the role of proangiogenic placental growth factor (PlGF), antiangiogenic endostatin and lymphangiogenic vascular endothelial growth factor (VEGF) -C as well as the receptors vascular endothelial growth factor receptor (VEGFR) -2 and VEGFR-3 during lung development and in development of lung injury in preterm infants. The studied growth factors were selected due to a close relationship with VEGF-A; a proangiogenic growth factor important in normal lung angiogenesis and lung injury in preterm infants. The thesis study consists of three analyses. I: Lung samples from fetuses, preterm and term infants without lung injury, as well as preterm infants with acute and chronic lung injury were stained by immunohistochemistry for PlGF, endostatin, VEGF-C, VEGFR-2 and VEGFR-3. II: Tracheal aspirate fluid (TAF) was collected in the early postnatal period from a patient population consisting of 59 preterm infants, half developing bronchopulmonary dysplasia (BPD) and half without BPD. PlGF, endostatin and VEGF-C concentrations were measured by commercial enzyme-linked immunosorbent assay (ELISA). III: Cord plasma was collected from very low birth weight (VLBW) (n=92) and term (n=48) infants in conjuncture with birth and endostatin concentrations were measured by ELISA. I: All growth factors and receptors studied were consistently stained in immunohistochemistry throughout development. For endostatin in early respiratory distress syndrome (RDS), no alveolar epithelial or macrophage staining was seen, whereas in late RDS and BPD groups, both alveolar epithelium and macrophages stained positively in approximately half of the samples. VEGFR-2 staining was fairly consistent, except for the fact that capillary endothelial staining in the BPD group was significantly decreased. II: During the first postnatal week in TAF mean PlGF concentrations were stable whereas mean endostatin and VEGF-C concentrations decreased. Higher concentrations of endostatin and VEGF-C correlated with lower birth weight (BW) and associated with administration of antenatal betamethasone. Parameters reflecting prenatal lung inflammation associated with lower PlGF, endostatin and VEGF-C concentrations. A higher mean supplemental fraction of inspired oxygen during the first 2 postnatal weeks (FiO2) correlated with higher endostatin concentrations. III: Endostatin concentrations in term infants were significantly higher than in VLBW infants. In VLBW infants higher endostatin concentrations associated with the development of BPD, this association remained significant after logistic regression analysis. We conclude that PlGF, endostatin and VEGF-C all have a physiological role in the developing lung. Also, the VEGFR-2 expression profile seems to reflect the ongoing differentiation of endothelia during development. Both endostatin and VEGFR-2 seem to be important in the development of BPD. During the latter part of the first postnatal week, preterm infants developing BPD have lower concentrations of VEGF-A in TAF. Our findings of disrupted VEGFR-2 staining in capillary and septal endothelium seen in the BPD group, as well as the increase in endostatin concentrations both in TAF and cord plasma associated with BPD, seem to strengthen the notion that there is a shift in the angiogenic balance towards a more antiangiogenic environment in BPD. These findings support the vascular hypothesis of BPD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To evaluate the applicability of visual feedback posturography (VFP) for quantification of postural control, and to characterize the horizontal angular vestibulo-ocular reflex (AVOR) by use of a novel motorized head impulse test (MHIT). Methods: In VFP, subjects standing on a platform were instructed to move their center of gravity to symmetrically placed peripheral targets as fast and accurately as possible. The active postural control movements were measured in healthy subjects (n = 23), and in patients with vestibular schwannoma (VS) before surgery (n = 49), one month (n = 17), and three months (n = 36) after surgery. In MHIT we recorded head and eye position during motorized head impulses (mean velocity of 170º/s and acceleration of 1 550º/s²) in healthy subjects (n = 22), in patients with VS before surgery (n = 38) and about four months afterwards (n = 27). The gain, asymmetry and latency in MHIT were calculated. Results: The intraclass correlation coefficient for VFP parameters during repeated tests was significant (r = 0.78-0.96; p < 0.01), although two of four VFP parameters improved slightly during five test sessions in controls. At least one VFP parameter was abnormal pre- and postoperatively in almost half the patients, and these abnormal preoperative VFP results correlated significantly with abnormal postoperative results. The mean accuracy in postural control in patients was reduced pre- and postoperatively. A significant side difference with VFP was evident in 10% of patients. In the MHIT, the normal gain was close to unity, the asymmetry in gain was within 10%, and the latency was a mean ± standard deviation 3.4 ± 6.3 milliseconds. Ipsilateral gain or asymmetry in gain was preoperatively abnormal in 71% of patients, whereas it was abnormal in every patient after surgery. Preoperative gain (mean ± 95% confidence interval) was significantly lowered to 0.83 ± 0.08 on the ipsilateral side compared to 0.98 ± 0.06 on the contralateral side. The ipsilateral postoperative mean gain of 0.53 ± 0.05 was significantly different from preoperative gain. Conclusion: The VFP is a repeatable, quantitative method to assess active postural control within individual subjects. The mean postural control in patients with VS was disturbed before and after surgery, although not severely. Side difference in postural control in the VFP was rare. The horizontal AVOR results in healthy subjects and in patients with VS, measured with MHIT, were in agreement with published data achieved using other techniques with head impulse stimuli. The MHIT is a non-invasive method which allows reliable clinical assessment of the horizontal AVOR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tactile sensation plays an important role in everyday life. While the somatosensory system has been studied extensively, the majority of information has come from studies using animal models. Recent development of high-resolution anatomical and functional imaging techniques has enabled the non-invasive study of human somatosensory cortex and thalamus. This thesis provides new insights into the functional organization of the human brain areas involved in tactile processing using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). The thesis also demonstrates certain optimizations of MEG and fMRI methods. Tactile digit stimulation elicited stimulus-specific responses in a number of brain areas. Contralateral activation was observed in somatosensory thalamus (Study II), primary somatosensory cortex (SI; I, III, IV), and post-auditory belt area (III). Bilateral activation was observed in secondary somatosensory cortex (SII; II, III, IV). Ipsilateral activation was found in the post-central gyrus (area 2 of SI cortex; IV). In addition, phasic deactivation was observed within ipsilateral SI cortex and bilateral primary motor cortex (IV). Detailed investigation of the tactile responses demonstrated that the arrangement of distal-proximal finger representations in area 3b of SI in humans is similar to that found in monkeys (I). An optimized MEG approach was sufficient to resolve such fine detail in functional organization. The SII region appeared to contain double representations for fingers and toes (II). The detection of activations in the SII region and thalamus improved at the individual and group levels when cardiac-gated fMRI was used (II). Better detection of body part representations at the individual level is an important improvement, because identification of individual representations is crucial for studying brain plasticity in somatosensory areas. The posterior auditory belt area demonstrated responses to both auditory and tactile stimuli (III), implicating this area as a physiological substrate for the auditory-tactile interaction observed in earlier psychophysical studies. Comparison of different smoothing parameters (III) demonstrated that proper evaluation of co-activation should be based on individual subject analysis with minimal or no smoothing. Tactile input consistently influenced area 3b of the human ipsilateral SI cortex (IV). The observed phasic negative fMRI response is proposed to result from interhemispheric inhibition via trans-callosal connections. This thesis contributes to a growing body of human data suggesting that processing of tactile stimuli involves multiple brain areas, with different spatial patterns of cortical activation for different stimuli.