3 resultados para Teorema de Gauss Bonnet
em Helda - Digital Repository of University of Helsinki
Resumo:
In this thesis we examine multi-field inflationary models of the early Universe. Since non-Gaussianities may allow for the possibility to discriminate between models of inflation, we compute deviations from a Gaussian spectrum of primordial perturbations by extending the delta-N formalism. We use N-flation as a concrete model; our findings show that these models are generically indistinguishable as long as the slow roll approximation is still valid. Besides computing non-Guassinities, we also investigate Preheating after multi-field inflation. Within the framework of N-flation, we find that preheating via parametric resonance is suppressed, an indication that it is the old theory of preheating that is applicable. In addition to studying non-Gaussianities and preheatng in multi-field inflationary models, we study magnetogenesis in the early universe. To this aim, we propose a mechanism to generate primordial magnetic fields via rotating cosmic string loops. Magnetic fields in the micro-Gauss range have been observed in galaxies and clusters, but their origin has remained elusive. We consider a network of strings and find that rotating cosmic string loops, which are continuously produced in such networks, are viable candidates for magnetogenesis with relevant strength and length scales, provided we use a high string tension and an efficient dynamo.
Resumo:
The magnetic field of the Earth is 99 % of the internal origin and generated in the outer liquid core by the dynamo principle. In the 19th century, Carl Friedrich Gauss proved that the field can be described by a sum of spherical harmonic terms. Presently, this theory is the basis of e.g. IGRF models (International Geomagnetic Reference Field), which are the most accurate description available for the geomagnetic field. In average, dipole forms 3/4 and non-dipolar terms 1/4 of the instantaneous field, but the temporal mean of the field is assumed to be a pure geocentric axial dipolar field. The validity of this GAD (Geocentric Axial Dipole) hypothesis has been estimated by using several methods. In this work, the testing rests on the frequency dependence of inclination with respect to latitude. Each combination of dipole (GAD), quadrupole (G2) and octupole (G3) produces a distinct inclination distribution. These theoretical distributions have been compared with those calculated from empirical observations from different continents, and last, from the entire globe. Only data from Precambrian rocks (over 542 million years old) has been used in this work. The basic assumption is that during the long-term course of drifting continents, the globe is sampled adequately. There were 2823 observations altogether in the paleomagnetic database of the University of Helsinki. The effect of the quality of observations, as well as the age and rocktype, has been tested. For comparison between theoretical and empirical distributions, chi-square testing has been applied. In addition, spatiotemporal binning has effectively been used to remove the errors caused by multiple observations. The modelling from igneous rock data tells that the average magnetic field of the Earth is best described by a combination of a geocentric dipole and a very weak octupole (less than 10 % of GAD). Filtering and binning gave distributions a more GAD-like appearance, but deviation from GAD increased as a function of the age of rocks. The distribution calculated from so called keypoles, the most reliable determinations, behaves almost like GAD, having a zero quadrupole and an octupole 1 % of GAD. In no earlier study, past-400-Ma rocks have given a result so close to GAD, but low inclinations have been prominent especially in the sedimentary data. Despite these results, a greater deal of high-quality data and a proof of the long-term randomness of the Earth's continental motions are needed to make sure the dipole model holds true.