5 resultados para Tail Shape

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correct localization of proteins is essential for cell viability. In order to achieve correct protein localization to cellular membranes, conserved membrane targeting and translocation mechanisms have evolved. The focus of this work was membrane targeting and translocation of a group of proteins that circumvent the known targeting and translocation mechanisms, the C-tail anchored protein family. Members of this protein family carry out a wide range of functions, from protein translocation and recognition events preceding membrane fusion, to the regulation of programmed cell death. In this work, the mechanisms of membrane insertion and targeting of two C-tail anchored proteins were studied utilizing in vivo and in vitro methods, in yeast and mammalian cell systems. The proteins studied were cytochrome b(5), a well characterized C-tail anchored model protein, and N-Bak, a novel member of the Bcl-2 family of regulators of programmed cell death. Membrane insertion of cytochrome b(5) into the endoplasmic reticulum membrane was found to occur independently of the known protein conducting channels, through which signal peptide-containing polypeptides are translocated. In fact, the membrane insertion process was independent of any protein components and did not require energy. Instead membrane insertion was observed to be dependent on the lipid composition of the membrane. The targeting of N-Bak was found to depend on the cellular context. Either the mitochondrial or endoplasmic reticulum membranes were targeted, which resulted in morphological changes of the target membranes. These findings indicate the existence of a novel membrane insertion mechanism for C-tail anchored proteins, in which membrane integration of the transmembrane domain, and the translocation of C-terminal fragments, appears to be spontaneous. This mode of membrane insertion is regulated by the target membrane fluidity, which depends on the lipid composition of the bilayer, and the hydrophobicity of the transmembrane domain of the C-tail anchored protein, as well as by the availability of the C-tail for membrane integration. Together these mechanisms enable the cell to achieve spatial and temporal regulation of sub-cellular localization of C-tail anchored proteins.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results from a study on the production of Finnish prosody. The effect of word order and the tonal shape in the production of Finnish prosody was studied as produced by 8 native Finnish speakers. Predictions formulated with regard to results from an earlier study pertaining to the perception of promi- nence were tested. These predictions had to do with the tonal shape of the utterances in the form of a flat hat pattern and the effect of word order on the so called top-line declination within an adver- bial phrase in the utterances. The results from the experiment give support to the following claims: the temporal domain of prosodic focus is the whole utterance, word order reversal from unmarked to marked has an effect on the production of prosody, and the pro- duction of the tonal aspects of focus in Finnish follows a basic flat hat pattern. That is the prominence of a word can be produced by an f 0 rise or a fall, depending on the location of the word in an utterance. The basic accentual shape of a Finnish word is then not a pointed rise/fall hat shape as claimed before since it can vary depending on the syllable structure and the position within an ut- terance.