10 resultados para Surface Properties
em Helda - Digital Repository of University of Helsinki
Resumo:
Modifications of surface materials and their effects on cleanability have important impacts in many fields of activity. In this study the primary aim was to develop radiochemical methods suitable for evaluating cleanability in material research for different environments. Another aim was to investigate the effects of surface modifications on cleanabilitity and surface properties of plastics, ceramics, concrete materials and also their coatings in conditions simulating their typical environments. Several new 51Cr and 14C labelled soils were developed for testing situations. The new radiochemical methods developed were suitable for examining different surface materials and different soil types, providing quantitative information about the amount of soil on surfaces. They also take into account soil soaked into surfaces. The supporting methods colorimetric determination and ATP bioluminescence provided semi-quantitative results. The results from the radiochemical and supporting methods partly correlated with each other. From a material research point of view numerous new materials were evaluated. These included both laboratory-made model materials and commercial products. Increasing the amount of plasticizer decreased the cleanability of poly(vinyl chloride) (PVC) materials. Microstructured surfaces of plastics improved the cleanability of PVC from particle soils, whereas for oil soil microstructuring reduced the cleanability. In the case of glazed ceramic materials, coatings affected the cleanability. The roughness of surfaces correlated with cleanability from particle soils and the cleanability from oil soil correlated with the contact angles. Organic particle soil was removed more efficiently from TiO2-coated ceramic surfaces after UV-radiation than without UV treatment, whereas no effect was observed on the cleanability of oil soil. Coatings improved the cleanability of concrete flooring materials intended for use in animal houses.
Resumo:
The surface properties of solid state pharmaceutics are of critical importance. Processing modifies the surfaces and effects surface roughness, which influences the performance of the final dosage form in many different levels. Surface roughness has an effect on, e.g., the properties of powders, tablet compression and tablet coating. The overall goal of this research was to understand the surface structures of pharmaceutical surfaces. In this context the specific purpose was to compare four different analysing techniques (optical microscopy, scanning electron microscopy, laser profilometry and atomic force microscopy) in various pharmaceutical applications where the surfaces have quite different roughness scale. This was done by comparing the image and roughness analysing techniques using powder compacts, coated tablets and crystal surfaces as model surfaces. It was found that optical microscopy was still a very efficient technique, as it yielded information that SEM and AFM imaging are not able to provide. Roughness measurements complemented the image data and gave quantitative information about height differences. AFM roughness data represents the roughness of only a small part of the surface and therefore needs other methods like laser profilometer are needed to provide a larger scale description of the surface. The new developed roughness analysing method visualised surface roughness by giving detailed roughness maps, which showed local variations in surface roughness values. The method was able to provide a picture of the surface heterogeneity and the scale of the roughness. In the coating study, the laser profilometer results showed that the increase in surface roughness was largest during the first 30 minutes of coating when the surface was not yet fully covered with coating. The SEM images and the dispersive X-ray analysis results showed that the surface was fully covered with coating within 15 to 30 minutes. The combination of the different measurement techniques made it possible to follow the change of surface roughness and development of polymer coating. The optical imaging techniques gave a good overview of processes affecting the whole crystal surface, but they lacked the resolution to see small nanometer scale processes. AFM was used to visualize the nanoscale effects of cleaving and reveal the full surface heterogeneity, which underlies the optical imaging. Ethanol washing changed small (nanoscale) structure to some extent, but the effect of ethanol washing on the larger scale was small. Water washing caused total reformation of the surface structure at all levels.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
Plastic surfaces are a group of materials used for many purposes. The present study was focused on methods for investigation of surface topography, wearing and cleanability of polyvinyl chloride (PVC) model surfaces and industrial plastic surfaces. Contact profilometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are powerful methods for studying the topography of plastic surfaces. Although they have their own limitations, they are together an effective tool providing useful information on surface topography, especially when studying laboratory-made PVC model surfaces with known chemical compositions and structures. All examined laboratory-made PVC plastic surfaces examined in this work could be considered as smooth according to both AFM and profilometer measurements because height differences are in the nanoscale on every surface. Industrial plastic surfaces are a complex group of materials because of their chemical and topographical heterogeneity, but they are nevertheless important reference materials when developing cleaning and wearing methods. According to the results of this study the Soiling and Wearing Drum and the Frick-Taber methods are very useful when simulating three-body wearing of plastic surfaces. Both the investigated wearing methods can be used to compare the wearing of different plastic materials using appropriate evaluation methods of wearing and industrial use. In this study, physical methods were developed and adapted from other fields of material research to cleanability studies. The thesis focuses on the methodology for investigating the cleanability of plastic surfaces under realistic conditions, where surface topography and the effect of wear cleanability were among the major topics. A colorimetric method proved to be suitable for examining the cleanability of the industrial plastic surfaces. The results were utilized to evaluate the relationship between cleanability and the surface properties of plastic surfaces. The devices and methods used in the work can be utilized both in material research and product development.
Resumo:
Kontrolloidut radikaalipolymerointimenetelmät, kuten RAFT-polymerointi, ovat moderni tapa valmistaa polymeerejä säädellysti. RAFT-polymeroinnilla polymeerien ketjunpituutta, moolimassajakaumaa, mikrorakennetta (taktisuus, järjestys), koostumusta ja funktionaalisuutta kyetään hallitsemaan. Siten menetelmällä voidaan valmistaa uudenlaisia polymeeriarkkitektuureja, kuten blokki- ja tähtipolymeerejä, sekä hybridimateriaaleja ja biokonjugaatteja. Polymeeristen rakennuspalikoiden itsejärjestyminen, missä huolellisesti syntetisoidut polymeerit järjestyvät halutulla tavalla nanoskaalassa, on suosittu tutkimuskohde materiaalitieteessä. On huomattava, että blokkipolymeerien itsejärjestyminen on vielä suhteellisen nuori tutkimusaihe. Tämän hetkiset polymeeriset nanomateriaalit ovat suhteellisen yksinkertaisia luonnon luomuksiin verrattuina, tarjoten jatkuvasti uusia mahdollisuuksia seuraavan sukupolven polymeereille. Tässä työssä RAFT-polymeroinnilla syntetisoitiin amfifiilisiä di- ja triblokkikopolymeerejä sekä tutkittiin niiden järjestymistä nanorakenteiksi. Kaikissa blokkikopolymeereissä käytettiin lämpöherkkää poly(N-isopropyyliakryyliamidia). Siten polymeerit ja tutkitut materiaalit reagoivat lämpötilanmuutokseen ympäristössä eli ovat ns. ympäristöherkkiä. Työssä tutkittiin taktisuuden kontrollointia N-isopropyyliakryyliamidin RAFT-polymeroinnissa. Polymeerin taktisuutta sekä ketjunpituutta ja blokkijärjestystä säätämällä voitiin hallita polymeerin itsejärjestymistä vesiliuoksessa. Amfifiiliset polymeerit järjestyivät laimeissa vesiliuoksissa erilaisiksi misellirakenteiksi, muodostaen ns. mikrosäiliöitä. Tällaisilla polymeereillä odotetaan olevan sovelluksia esim. lääkeainevapautuksessa. Amfifiilejä käytetään myös esimerkiksi apuaineina pinnoitteissa ja kosmetiikassa. Kiinteässä tilassa tutkitut triblokkikopolymeerit muodostivat teoreettisesti ennustettuja morfologioita. Lämpöherkän materiaalin hydrogeelit toimivat suodatinmembraanina nanokokoluokassa. RAFT-polymeroinnilla syntetisoituja polymeereja voidaan sellaisenaan käyttää kultananopartikkeleiden päällystämiseen. Kultananopartikkelit ovat erittäin kiinostavia mm. niiden stabiilisuuden ja ainutlaatuisten pintaominaisuuksien vuoksi. Kun amfifiilisiä polymeerejä kiinnitettiin kultapartikkelin pinnalle, sen liuos- ja optisia ominaisuuksia voitiin säädellä pH:n ja lämpötilan avulla. Tällaisilla kultananopartikkeleilla on sovelluksia mm. diagnostiikassa, sensoreina ja solukuvauksessa.
Resumo:
Välikorvaleikkauksiin usein liittyvän välikorvan ja kuuloluuketjun kirurgisen rekonstruktion tavoitteena on luoda olosuhteet, jotka mahdollistavat hyvän kuulon sekä välikorvan säilymisen tulehduksettomana ja ilmapitoisena. Välikorvan rekonstruktiossa on käytetty implanttimateriaaleina perinteisesti potilaan omia kudoksia sekä tarvittaessa erilaisia hajoamattomia biomateriaaleja, mm. titaania ja silikonia. Ongelmana biomateriaalien käytössä voi olla bakteerien adherenssi eli tarttuminen vieraan materiaalin pintaan, mikä saattaa johtaa biofilmin muodostumiseen. Tämä voi aiheuttaa kroonisen, huonosti antibiootteihin reagoivan infektion kudoksessa, mikä usein käytännössä johtaa uusintaleikkaukseen ja implantin poistoon. Maitohappo- ja glykolihappopohjaiset biologisesti hajoavat polymeerit ovat olleet kliinisessä käytössä jo vuosikymmeniä. Niitä on käytetty erityisesti tukimateriaaleina mm. ortopediassa sekä kasvo- ja leukakirurgiassa. Niitä ei ole toistaiseksi käytetty välikorvakirurgiassa. Korvan kuvantamiseen käytetään ensisijaisesti tietokonetomografiaa (TT). TT-tutkimuksen ongelmana on potilaan altistuminen suhteellisen korkealle sädeannokselle, joka kasvaa kumulatiivisesti, jos kuvaus joudutaan toistamaan. Väitöskirjatyö selvittää uuden, aiemmin kliinisessä työssä rutiinisti lähinnä hampaiston ja kasvojen alueen kuvantamiseen käytetyn rajoitetun kartiokeila-TT:n soveltuvuutta korvan alueen kuvantamiseen. Väitöskirjan kahdessa ensimmäisessä osatyössä tutkittiin ja verrattiin kahden kroonisia ja postoperatiivisia korvainfektioita aiheuttavan bakteerin, Staphylococcus aureuksen ja Pseudomonas aeruginosan, in vitro adherenssia titaanin, silikonin ja kahden eri biohajoavan polymeerin (PLGA) pintaan. Lisäksi tutkittiin materiaalien albumiinipinnoituksen vaikutusta adherenssiin. Kolmannessa osatyössä tutkittiin eläinmallissa PLGA:n biokompatibiliteettia eli kudosyhteensopivuutta kokeellisessa välikorvakirurgiassa. Chinchillojen välikorviin istutettiin PLGA-materiaalia, eläimiä seurattiin, ja ne lopetettiin 6 kk:n kuluttua operaatiosta. Biokompatibiliteetin arviointi perustui kliinisiin havaintoihin sekä kudosnäytteisiin. Neljännessä osatyössä tutkittiin kartiokeila-TT:n soveltuvuutta korvan alueen kuvantamiseen vertaamalla sen tarkkuutta perinteisen spiraali-TT:n tarkkuuteen. Molemmilla laitteilla kuvattiin ohimo- eli temporaaliluita korvan alueen kliinisesti ja kirurgisesti tärkeiden rakenteiden kuvantumisen tarkkuuden arvioimiseksi. Viidennessä osatyössä arvioitiin myös operoitujen temporaaliluiden kuvantumista kartiokeila-TT:ssa. Bakteeritutkimuksissa PLGA-materiaalin pintaan tarttui keskimäärin korkeintaan saman verran tai vähemmän bakteereita kuin silikonin tai titaanin. Albumiinipinnoitus vähensi bakteeriadherenssia merkitsevästi kaikilla materiaaleilla. Eläinkokeiden perusteella PLGA todettiin hyvin siedetyksi välikorvassa. Korvakäytävissä tai välikorvissa ei todettu infektioita, tärykalvon perforaatioita tai materiaalin esiin työntymistä. Kudosnäytteissä näkyi lievää tulehdusreaktiota ja fibroosia implantin ympärillä. Temporaaliluutöissä rajoitettu kartiokeila-TT todettiin vähintään yhtä tarkaksi menetelmäksi kuin spiraali-TT välikorvan ja sisäkorvan rakenteiden kuvantamisessa, ja sen aiheuttama kertasäderasitus todettiin spiraali-TT:n vastaavaa huomattavasti vähäisemmäksi. Kartiokeila-TT soveltui hyvin välikorvaimplanttien ja postoperatiivisen korvan kuvantamiseen. Tulokset osoittavat, että PLGA on välikorvakirurgiaan soveltuva, turvallinen ja kudosyhteensopiva biomateriaali. Biomateriaalien pinnoittaminen albumiinilla vähentää merkittävästi bakteeriadherenssia niihin, mikä puoltaa pinnoituksen soveltamista implanttikirurgiassa. Kartiokeila-TT soveltuu korvan alueen kuvantamiseen. Sen tarkkuus kliinisesti tärkeiden rakenteiden osoittamisessa on vähintään yhtä hyvä ja sen potilaalle aiheuttama sädeannos pienempi kuin nykyisen korva-spiraali-TT:n. Tämä tekee menetelmästä spiraali-TT:aa potilasturvallisemman vaihtoehdon erityisesti, jos potilaan tilanne vaatii seurantaa ja useampia kuvauksia, ja jos halutaan kuvata rajoitettuja alueita uni- tai bilateraalisesti.
Resumo:
Microchips for use in biomolecular analysis show a lot of promise for medical diagnostics and biomedical basic research. Among the potential advantages are more sensitive and faster analyses as well as reduced cost and sample consumption. Due to scaling laws, the surface are to volume ratios of microfluidic chips is very high. Because of this, tailoring the surface properties and surface functionalization are very important technical issues for microchip development. This thesis studies two different types of functional surfaces, surfaces for open surface capillary microfluidics and surfaces for surface assisted laser desorption ionization mass spectrometry, and combinations thereof. Open surface capillary microfluidics can be used to transport and control liquid samples on easily accessible open surfaces simply based on surface forces, without any connections to pumps or electrical power sources. Capillary filling of open partially wetting grooves is shown to be possible with certain geometries, aspect ratios and contact angles, and a theoretical model is developed to identify complete channel filling domains, as well as partial filling domains. On the other hand, partially wetting surfaces with triangular microstructures can be used for achieving directional wetting, where the water droplets do not spread isotropically, but instead only spread to a predetermined sector. Furthermore, by patterning completely wetting and superhydrophobic areas on the same surface, complex droplet shapes are achieved, as the water stretches to make contact with the wetting surface, but does not enter into the superhydrophobic domains. Surfaces for surface assisted laser desorption ionization mass spectrometry are developed by applying various active thin film coatings on multiple substrates, in order to separate surface and bulk effects. Clear differences are observed between both surface and substrate layers. The best performance surfaces consisted of amorphous silicon coating and an inorganic-organic hybrid substrate, with nanopillars and nanopores. These surfaces are used for matrix-free ionization of drugs, peptides and proteins, and for some analytes, the detection limits were in the high attomoles. Microfluidics and laser desorption ionization surfaces are combined on a functionalized drying platforms, where the surface is used to control the shape of the deposited analyte droplet, and the shape of the initial analyte droplet affects the dried droplet solute deposition pattern. The deposited droplets can then directly detected by mass spectrometry. Utilizing this approach, results of analyte concentration, splitting and separation are demonstrated.
Resumo:
Generation of raw materials for dry powder inhalers by different size reduction methods can be expected to influence physical and chemical properties of the powders. This can cause differences in particle size, size distribution, shape, crystalline properties, surface texture and energy. These physical properties of powders influence the behaviour of particles before and after inhalation. Materials with an amorphous surface have different surface energy compared to materials with crystalline surface. This can affect the adhesion and cohesion of particles. Changes in the surface nature of the drug particles results in a change in product performance. By stabilization of the raw materials the amorphous surfaces are converted into crystalline surfaces. The primary aim of the study was to investigate the influence of the surface properties of the inhalation particles on the quality of the product. The quality of the inhalation product is evaluated by measuring the fine particle dose (FPD). FDP is the total dose of particles with aerodynamic diameters smaller than 5,0 μm. The secondary aim of this study was to achieve the target level of the FPD and the stability of the FPD. This study was also used to evaluate the importance of the stabilization of the inhalation powders. The study included manufacturing and analysing drug substance 200 μg/dose inhalation powder batches using non-stabilized or stabilized raw materials. The inhaler formulation consisted of micronized drug substance, lactose <100μm and micronized lactose <10μm. The inhaler device was Easyhaler®. Stabilization of the raw materials was done in different relative humidity, temperature and time. Surface properties of the raw materials were studied by dynamic vapour sorption, scanning electron microscopy and three-point nitrogen adsorption technique. Particle size was studied by laser diffraction particle size analyzer. Aerodynamic particle size distribution from inhalers was measured by new generation impactor. Stabilization of all three raw materials was successful. A clear difference between nonstabilized and stabilized raw materials was achieved for drug substance and lactose <10μm. However for lactose <100μm the difference wasn’t as clear as wanted. The surface of the non-stabilized drug substance was more irregular and the particles had more roughness on the surface compared to the stabilized drug substances particles surface. The surface of the stabilized drug particles was more regular and smoother than non-stabilized. Even though a good difference between stabilized and non-stabilized raw materials was achieved, a clear evidence of the effect of the surface properties of the inhalation particles on the quality of the product was not observed. Stabilization of the raw materials didn’t lead to a higher FPD. Possible explanations for the unexpected result might be too rough conditions in the stabilization of the drug substance or smaller than wanted difference in the degree of stabilization of the main component of the product <100μm. Despite positive effects on the quality of the product were not seen there appears to be some evidence that stabilized drug substance results in smaller particle size of dry powder inhalers.
Resumo:
Lactobacillus rhamnosus GG is a probiotic bacterium that is known worldwide. Since its discovery in 1985, the health effects and biology of this health-promoting strain have been researched at an increasing rate. However, knowledge of the molecular biology responsible for these health effects is limited, even though research in this area has continued to grow since the publication of the whole genome sequence of L. rhamnosus GG in 2009. In this thesis, the molecular biology of L. rhamnosus GG was explored by mapping the changes in protein levels in response to diverse stress factors and environmental conditions. The proteomics data were supplemented with transcriptome level mapping of gene expression. The harsh conditions of the gastro-intestinal tract, which involve acidic conditions and detergent-like bile acids, are a notable challenge to the survival of probiotic bacteria. To simulate these conditions, L. rhamnosus GG was exposed to a sudden bile stress, and several stress response mechanisms were revealed, among others various changes in the cell envelope properties. L. rhamnosus GG also responded in various ways to mild acid stress, which probiotic bacteria may face in dairy fermentations and product formulations. The acid stress response of L. rhamnosus GG included changes in central metabolism and specific responses related to the control of intracellular pH. Altogether, L. rhamnosus GG was shown to possess a large repertoire of mechanisms for responding to stress conditions, which is a beneficial character of a probiotic organism. Adaptation to different growth conditions was studied by comparing the proteome level responses of L. rhamnosus GG to divergent growth media and to different phases of growth. Comparing different growth phases revealed that the metabolism of L. rhamnosus GG is modified markedly during shift from the exponential to the stationary phase of growth. These changes were seen both at proteome and transcriptome levels and in various different cellular functions. When the growth of L. rhamnosus GG in a rich laboratory medium and in an industrial whey-based medium was compared, various differences in metabolism and in factors affecting the cell surface properties could be seen. These results led us to recommend that the industrial-type media should be used in laboratory studies of L. rhamnosus GG and other probiotic bacteria to achieve a similar physiological state for the bacteria as that found in industrial products, which would thus yield more relevant information about the bacteria. In addition, an interesting phenomenon of protein phosphorylation was observed in L. rhamnosus GG. Phosphorylation of several proteins of L. rhamnosus GG was detected, and there were hints that the degree of phosphorylation may be dependent on the growth pH.
Resumo:
Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.