7 resultados para Surface Effect Ship
em Helda - Digital Repository of University of Helsinki
Resumo:
The human visual system has adapted to function in different lighting environments and responds to contrast instead of the amount of light as such. On the one hand, this ensures constancy of perception, for example, white paper looks white both in bright sunlight and in dim moonlight, because contrast is invariant to changes in overall light level. On the other hand, the brightness of the surfaces has to be reconstructed from the contrast signal because no signal from surfaces as such is conveyed to the visual cortex. In the visual cortex, the visual image is decomposed to local features by spatial filters that are selective for spatial frequency, orientation, and phase. Currently it is not known, however, how these features are subsequently integrated to form objects and object surfaces. In this thesis the integration mechanisms of achromatic surfaces were studied by psychophysically measuring the spatial frequency and orientation tuning of brightness perception. In addition, the effect of textures on the spread of brightness and the effect of phase of the inducing stimulus on brightness were measured. The novel findings of the thesis are that (1) a narrow spatial frequency band, independent of stimulus size and complexity, mediates brightness information (2) figure-ground brightness illusions are narrowly tuned for orientation (3) texture borders, without any luminance difference, are able to block the spread of brightness, and (4) edges and even- and odd-symmetric Gabors have a similar antagonistic effect on brightness. The narrow spatial frequency tuning suggests that only a subpopulation of neurons in V1 is involved in brightness perception. The independence of stimulus size and complexity indicates that the narrow tuning reflects hard-wired processing in the visual system. Further, it seems that figure-ground segregation and mechanisms integrating contrast polarities are closely related to the low level mechanisms of brightness perception. In conclusion, the results of the thesis suggest that a subpopulation of neurons in visual cortex selectively integrates information from different contrast polarities to reconstruct surface brightness.
Resumo:
Modifications of surface materials and their effects on cleanability have important impacts in many fields of activity. In this study the primary aim was to develop radiochemical methods suitable for evaluating cleanability in material research for different environments. Another aim was to investigate the effects of surface modifications on cleanabilitity and surface properties of plastics, ceramics, concrete materials and also their coatings in conditions simulating their typical environments. Several new 51Cr and 14C labelled soils were developed for testing situations. The new radiochemical methods developed were suitable for examining different surface materials and different soil types, providing quantitative information about the amount of soil on surfaces. They also take into account soil soaked into surfaces. The supporting methods colorimetric determination and ATP bioluminescence provided semi-quantitative results. The results from the radiochemical and supporting methods partly correlated with each other. From a material research point of view numerous new materials were evaluated. These included both laboratory-made model materials and commercial products. Increasing the amount of plasticizer decreased the cleanability of poly(vinyl chloride) (PVC) materials. Microstructured surfaces of plastics improved the cleanability of PVC from particle soils, whereas for oil soil microstructuring reduced the cleanability. In the case of glazed ceramic materials, coatings affected the cleanability. The roughness of surfaces correlated with cleanability from particle soils and the cleanability from oil soil correlated with the contact angles. Organic particle soil was removed more efficiently from TiO2-coated ceramic surfaces after UV-radiation than without UV treatment, whereas no effect was observed on the cleanability of oil soil. Coatings improved the cleanability of concrete flooring materials intended for use in animal houses.
Resumo:
Sea-surface wind observations of previous generation scatterometers have been successfully assimilated into Numerical Weather Prediction (NWP) models. Impact studies conducted with these assimilation implementations have shown a distinct improvement to model analysis and forecast accuracies. The Advanced Scatterometer (ASCAT), flown on Metop-A, offers an improved sea-surface wind accuracy and better data coverage when compared to the previous generation scatterometers. Five individual case studies are carried out. The effect of including ASCAT data into High Resolution Limited Area Model (HIRLAM) assimilation system (4D-Var) is tested to be neutral-positive for situations with general flow direction from the Atlantic Ocean. For northerly flow regimes the effect is negative. This is later discussed to be caused by problems involving modeling northern flows, and also due to the lack of a suitable verification method. Suggestions and an example of an improved verification method is presented later on. A closer examination of a polar low evolution is also shown. It is found that the ASCAT assimilation scheme improves forecast of the initial evolution of the polar low, but the model advects the strong low pressure centre too fast eastward. Finally, the flaws of the implementation are found small and implementing the ASCAT assimilation scheme into the operational HIRLAM suite is feasible, but longer time period validation is still required.
Resumo:
Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.
Resumo:
The effect of scarification, ploughing and cross-directional plouhing on temperature conditions in the soil and adjacent air layer have been studied during 11 consecutive growth periods by using an unprepared clear-cut area as a control site. The maximum and minimum temperatures were measured daily in the summer months, and other temperature observations were made at four-hour intervals by means of a Grant measuring instrument. The development of the seedling stand was also followed in order to determine its shading effect on the soil surface. Soil preparation decreased the daily temperature amplitude of the air at the height of 10 cm. The maximum temperatures on sunny days were lower in the tilts of the ploughed and in the humps of the cross-directional ploughed sites compared with the unprepared area. Correspondingly, the night temperatures were higher and so the soil preparation considerably reduced the risk of night frost. In the soil at the depth of 5 cm, soil preparation increased daytime temperatures and reduced night temperatures compared with unprepared area. The maximum increase in monthly mean temperatures was almost 5 °C, and the daily variation in the surface parts of the tilts and humps increased so that excessively high temperatures for the optimal growth of the root system were measured from time to time. The temperature also rose at the depths of 50 and 100 cm. Soil preparation also increased the cumulative temperature sum. The highest sums accumulated during the summer months were recorded at the depth of 5 cm in the humps of cross-directional ploughed area (1127 dd.) and in the tilts of the ploughed area (1106 dd.), while the corresponding figure in the unprepared soil was 718 dd. At the height of 10 cm the highest temperature sum was 1020 dd. in the hump, the corresponding figure in the unprepared area being 925 dd. The incidence of high temperature amplitudes and percentage of high temperatures at the depth of 5 cm decreased most rapidly in the humps of cross-directional ploughed area and in the ploughing tilts towards the end of the measurement period. The decrease was attributed principally to the compressing of tilts, the ground vegetation succession and the growth of seedlings. The mean summer temperature in the unprepared area was lower than in the prepared area and the difference did not diminish during the period studied. The increase in temperature brought about by soil preparation thus lasts at least more than 10 years.
Resumo:
Generation of raw materials for dry powder inhalers by different size reduction methods can be expected to influence physical and chemical properties of the powders. This can cause differences in particle size, size distribution, shape, crystalline properties, surface texture and energy. These physical properties of powders influence the behaviour of particles before and after inhalation. Materials with an amorphous surface have different surface energy compared to materials with crystalline surface. This can affect the adhesion and cohesion of particles. Changes in the surface nature of the drug particles results in a change in product performance. By stabilization of the raw materials the amorphous surfaces are converted into crystalline surfaces. The primary aim of the study was to investigate the influence of the surface properties of the inhalation particles on the quality of the product. The quality of the inhalation product is evaluated by measuring the fine particle dose (FPD). FDP is the total dose of particles with aerodynamic diameters smaller than 5,0 μm. The secondary aim of this study was to achieve the target level of the FPD and the stability of the FPD. This study was also used to evaluate the importance of the stabilization of the inhalation powders. The study included manufacturing and analysing drug substance 200 μg/dose inhalation powder batches using non-stabilized or stabilized raw materials. The inhaler formulation consisted of micronized drug substance, lactose <100μm and micronized lactose <10μm. The inhaler device was Easyhaler®. Stabilization of the raw materials was done in different relative humidity, temperature and time. Surface properties of the raw materials were studied by dynamic vapour sorption, scanning electron microscopy and three-point nitrogen adsorption technique. Particle size was studied by laser diffraction particle size analyzer. Aerodynamic particle size distribution from inhalers was measured by new generation impactor. Stabilization of all three raw materials was successful. A clear difference between nonstabilized and stabilized raw materials was achieved for drug substance and lactose <10μm. However for lactose <100μm the difference wasn’t as clear as wanted. The surface of the non-stabilized drug substance was more irregular and the particles had more roughness on the surface compared to the stabilized drug substances particles surface. The surface of the stabilized drug particles was more regular and smoother than non-stabilized. Even though a good difference between stabilized and non-stabilized raw materials was achieved, a clear evidence of the effect of the surface properties of the inhalation particles on the quality of the product was not observed. Stabilization of the raw materials didn’t lead to a higher FPD. Possible explanations for the unexpected result might be too rough conditions in the stabilization of the drug substance or smaller than wanted difference in the degree of stabilization of the main component of the product <100μm. Despite positive effects on the quality of the product were not seen there appears to be some evidence that stabilized drug substance results in smaller particle size of dry powder inhalers.