3 resultados para Sun safe apparel
em Helda - Digital Repository of University of Helsinki
Resumo:
Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.
Resumo:
This dissertation considers the problem of trust in the context of food consumption. The research perspectives refer to institutional conditions for consumer trust, personal practices of food consumption, and strategies consumers employ for controlling the safety of their food. The main concern of the study is to investigate consumer trust as an adequate response to food risks, i.e. a strategy helping the consumer to make safe choices in an uncertain food situation. "Risky" perspective serves as a frame of reference for understanding and explaining trust relations. The original aim of the study was to reveal the meanings applied to the concepts of trust, safety and risks in the perspective of market choices, the assessments of food risks and the ways of handling them. Supplementary research tasks presumed descriptions of institutional conditions for consumer trust, including descriptions of the food market, and the presentation of food consumption patterns in St. Petersburg. The main empirical material is based on qualitative interviews with consumers and interviews and group discussions with professional experts (market actors, representatives of inspection bodies and consumer organizations). Secondary material is used for describing institutional conditions for consumer trust and the market situation. The results suggest that the idea of consumer trust is associated with the reputation of suppliers, stable quality and taste of their products, and reliable food information. Being a subjectively constructed state connected to the act of acceptance, consumer trust results in positive buying decisions and stable preferences in the food market. The consumers' strategies that aim at safe food choices refer to repetitive interactions with reliable market actors that free them from constant consideration in the marketplace. Trust in food is highly mediated by trust in institutions involved in the food system. The analysis reveals a clear pattern of disbelief in the efficiency of institutional food control. The study analyses this as a reflection of "total distrust" that appears to be a dominant mood in many contexts of modern Russia. However, the interviewees emphasize the state's decisive role in suppressing risks in the food market. Also, the findings are discussed with reference to the consumers' possibilities of personal control over food risks. Three main responses to a risky food situation are identified: the reflexive approach, the traditional approach, and the fatalistic approach.