11 resultados para Stochastic inflation
em Helda - Digital Repository of University of Helsinki
Resumo:
Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.
Resumo:
The stochastic filtering has been in general an estimation of indirectly observed states given observed data. This means that one is discussing conditional expected values as being one of the most accurate estimation, given the observations in the context of probability space. In my thesis, I have presented the theory of filtering using two different kind of observation process: the first one is a diffusion process which is discussed in the first chapter, while the third chapter introduces the latter which is a counting process. The majority of the fundamental results of the stochastic filtering is stated in form of interesting equations, such the unnormalized Zakai equation that leads to the Kushner-Stratonovich equation. The latter one which is known also by the normalized Zakai equation or equally by Fujisaki-Kallianpur-Kunita (FKK) equation, shows the divergence between the estimate using a diffusion process and a counting process. I have also introduced an example for the linear gaussian case, which is mainly the concept to build the so-called Kalman-Bucy filter. As the unnormalized and the normalized Zakai equations are in terms of the conditional distribution, a density of these distributions will be developed through these equations and stated by Kushner Theorem. However, Kushner Theorem has a form of a stochastic partial differential equation that needs to be verify in the sense of the existence and uniqueness of its solution, which is covered in the second chapter.
Resumo:
Minimum Description Length (MDL) is an information-theoretic principle that can be used for model selection and other statistical inference tasks. There are various ways to use the principle in practice. One theoretically valid way is to use the normalized maximum likelihood (NML) criterion. Due to computational difficulties, this approach has not been used very often. This thesis presents efficient floating-point algorithms that make it possible to compute the NML for multinomial, Naive Bayes and Bayesian forest models. None of the presented algorithms rely on asymptotic analysis and with the first two model classes we also discuss how to compute exact rational number solutions.
Resumo:
The present study examines empirically the inflation dynamics of the euro area. The focus of the analysis is on the role of expectations in the inflation process. In six articles we relax rationality assumption and proxy expectations directly using OECD forecasts or Consensus Economics survey data. In the first four articles we estimate alternative Phillips curve specifications and find evidence that inflation cannot instantaneously adjust to changes in expectations. A possible departure of expectations from rationality seems not to be powerful enough to totally explain the persistence of euro area inflation in the New Keynesian framework. When expectations are measured directly, the purely forward-looking New Keynesian Phillips curve is outperformed by the hybrid Phillips curve with an additional lagged inflation term and the New Classical Phillips curve with a lagged expectations term. The results suggest that the euro area inflation process has become more forward-looking in the recent years of low and stable inflation. Moreover, in low inflation countries, the inflation dynamics have been more forward-looking already since the late 1970s. We find evidence of substantial heterogeneity of inflation dynamics across the euro area countries. Real time data analysis suggests that in the euro area real time information matters most in the expectations term in the Phillips curve and that the balance of expectations formation is more forward- than backward-looking. Vector autoregressive (VAR) models of actual inflation, inflation expectations and the output gap are estimated in the last two articles.The VAR analysis indicates that inflation expectations, which are relatively persistent, have a significant effect on output. However,expectations seem to react to changes in both output and actual inflation, especially in the medium term. Overall, this study suggests that expectations play a central role in inflation dynamics, which should be taken into account in conducting monetary policy.
Resumo:
This thesis consists of four research papers and an introduction providing some background. The structure in the universe is generally considered to originate from quantum fluctuations in the very early universe. The standard lore of cosmology states that the primordial perturbations are almost scale-invariant, adiabatic, and Gaussian. A snapshot of the structure from the time when the universe became transparent can be seen in the cosmic microwave background (CMB). For a long time mainly the power spectrum of the CMB temperature fluctuations has been used to obtain observational constraints, especially on deviations from scale-invariance and pure adiabacity. Non-Gaussian perturbations provide a novel and very promising way to test theoretical predictions. They probe beyond the power spectrum, or two point correlator, since non-Gaussianity involves higher order statistics. The thesis concentrates on the non-Gaussian perturbations arising in several situations involving two scalar fields, namely, hybrid inflation and various forms of preheating. First we go through some basic concepts -- such as the cosmological inflation, reheating and preheating, and the role of scalar fields during inflation -- which are necessary for the understanding of the research papers. We also review the standard linear cosmological perturbation theory. The second order perturbation theory formalism for two scalar fields is developed. We explain what is meant by non-Gaussian perturbations, and discuss some difficulties in parametrisation and observation. In particular, we concentrate on the nonlinearity parameter. The prospects of observing non-Gaussianity are briefly discussed. We apply the formalism and calculate the evolution of the second order curvature perturbation during hybrid inflation. We estimate the amount of non-Gaussianity in the model and find that there is a possibility for an observational effect. The non-Gaussianity arising in preheating is also studied. We find that the level produced by the simplest model of instant preheating is insignificant, whereas standard preheating with parametric resonance as well as tachyonic preheating are prone to easily saturate and even exceed the observational limits. We also mention other approaches to the study of primordial non-Gaussianities, which differ from the perturbation theory method chosen in the thesis work.
Resumo:
In this paper I provide some empirical answers to important questions such as the determinants of price inflation and the role of inflation polices. The results indicate that monetary policy is surprisingly impotent as a device for controlling inflation and there is little support that it influences the real variables. The low inflation after the Finnish devaluations in the beginning of 90s is foremost due to a previous imbalance in the labor markets and depressed aggregate demand.
Resumo:
The objective of this paper is to investigate the pricing accuracy under stochastic volatility where the volatility follows a square root process. The theoretical prices are compared with market price data (the German DAX index options market) by using two different techniques of parameter estimation, the method of moments and implicit estimation by inversion. Standard Black & Scholes pricing is used as a benchmark. The results indicate that the stochastic volatility model with parameters estimated by inversion using the available prices on the preceding day, is the most accurate pricing method of the three in this study and can be considered satisfactory. However, as the same model with parameters estimated using a rolling window (the method of moments) proved to be inferior to the benchmark, the importance of stable and correct estimation of the parameters is evident.