8 resultados para Stand Management

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paraserianthes falcataria is a very fast growing, light wood tree species, that has recently gained wide interest in Indonesia for industrial wood processing. At the moment the P. falcataria plantations managed by smallholders are lacking predefined management programmes for commercial wood production. The general objective of this study was to model the growth and yield of Paraserianthes falcataria stands managed by smallholders in Ciamis, West Java, Indonesia and to develop management scenarios for different production objectives. In total 106 circular sample plots with over 2300 P. falcataria trees were assessed on smallholder plantation inventory. In addition, information on market prices of P. falcataria wood was collected through rapid appraisals among industries. A tree growth model based on Chapman-Richards function was developed on three different site qualities and the stand management scenarios were developed under three management objectives: (1) low initial stand density with low intensity stand management, (2) high initial stand density with medium intensity of intervention, (3) high initial stand density and strong intensity of silvicultural interventions, repeated more than once. In general, the 9 recommended scenarios have rotation ages varying from 4 to 12 years, planting densities from 4x4 meters (625 trees ha-1) to 3x2 meters (1666 trees ha-1) and thinnings at intensities of removing 30 to 60 % of the standing trees. The highest annual income would be generated on high-quality with a scenario with initial planting density 3x2 m (1666 trees ha-1) one thinning at intensity of removing 55 % of the standing trees at the age of 2 years and clear cut at the age of 4 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis examines the impacts of silvicultural activities on productivity and financial returns of Scots pine (Pinus sylvestris L.) stands on drained peatlands in Finland. The effects of ditch network maintenance operations (DNM) and thinnings, with different timings and intensities, were studied. Based on stand development simulations, the best regimes for different types of stands according to site type, climatic area, and stand silvicultural status were defined from the viewpoint of both wood production and financial profitability. Certain aspects affecting the management outcomes, such as the timing of the first thinning, were examined using data from thinning experiments. Long-term predictions of the impacts of different management regimes were carried out by simulating the development of well-representative model-stands which were composed from appropriate inventory data sets. The MOTTI stand simulator used to perform the simulations enables the predictions by utilizing specific models for drained peatland stands. In addition to natural stand dynamics, these models describe the effects of silvicultural treatments on the development of a given stand. The mean annual increment of merchantable wood (MAImerch) was used as the measure of wood productivity, and the financial feasibility of the regimes was compared using net present value (NPV) analysis. Silvicultural treatments, when applied to appropriately match stand condition, increased both the productivity and financial returns of stand management. Applying DNM resulted in a small increase in MAImerch. When thinning was introduced along with DNM, their combined effect on wood productivity was considerable. According to current operational practices, DNM is generally combined with thinning. In some cases, e.g., in sites of low productivity, the need for DNM may become apparent prior to the thinning stage. As for profitability, thinnings proved to be crucial. The regimes with heavy and late thinnings were generally more profitable than those with normal thinnings. Further, early thinning (relative to stand volume) lacked appeal when seeking a financially profitable removal from the first thinning. In young stands with an initially poor silvicultural condition, however, applying even a low-yielding first thinning considerably increased the NPV when compared to a regime with no thinning at all. Generally, the regimes resulting in the best profitability included heavier thinnings and fewer DNM and thinning treatments than did the regimes resulting in the best yield results. This study demonstrates considerable potential for profitable wood production-oriented management in pine stands on drained peatlands despite their challenging circumstances and long rotations. The results can be used for defining new and more site-specific silvicultural guidelines for various types of drained, pine-dominated peatland stands within the entire range of boreal conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to examine the integrated climatic impacts of forestry and the use fibre-based packaging materials. The responsible use of forest resources plays an integral role in mitigating climate change. Forests offer three generic mitigation strategies; conservation, sequestration and substitution. By conserving carbon reservoirs, increasing the carbon sequestration in the forest or substituting fossil fuel intensive materials and energy, it is possible to lower the amount of carbon in the atmosphere through the use of forest resources. The Finnish forest industry consumed some 78 million m3 of wood in 2009, while total of 2.4 million tons of different packaging materials were consumed that same year in Finland. Nearly half of the domestically consumed packaging materials were wood-based. Globally the world packaging material market is valued worth annually some €400 billion, of which the fibre-based packaging materials account for 40 %. The methodology and the theoretical framework of this study are based on a stand-level, steady-state analysis of forestry and wood yields. The forest stand data used for this study were obtained from Metla, and consisted of 14 forest stands located in Southern and Central Finland. The forest growth and wood yields were first optimized with the help of Stand Management Assistant software, and then simulated in Motti for forest carbon pools. The basic idea was to examine the climatic impacts of fibre-based packaging material production and consumption through different forest management and end-use scenarios. Economically optimal forest management practices were chosen as the baseline (1) for the study. In the alternative scenarios, the amount of fibre-based packaging material on the market decreased from the baseline. The reduced pulpwood demand (RPD) scenario (2) follows economically optimal management practices under reduced pulpwood price conditions, while the sawlog scenario (3) also changed the product mix from packaging to sawnwood products. The energy scenario (4) examines the impacts of pulpwood demand shift from packaging to energy use. The final scenario follows the silvicultural guidelines developed by the Forestry Development Centre Tapio (5). The baseline forest and forest product carbon pools and the avoided emissions from wood use were compared to those under alternative forest management regimes and end-use scenarios. The comparison of the climatic impacts between scenarios gave an insight into the sustainability of fibre-based packaging materials, and the impacts of decreased material supply and substitution. The results show that the use of wood for fibre-based packaging purposes is favorable, when considering climate change mitigation aspects of forestry and wood use. Fibre-based packaging materials efficiently displace fossil carbon emissions by substituting more energy intensive materials, and they delay biogenic carbon re-emissions to the atmosphere for several months up to years. The RPD and the sawlog scenarios both fared well in the scenario comparison. These scenarios produced relatively more sawnwood, which can displace high amounts of emissions and has high carbon storing potential due to the long lifecycle. The results indicate the possibility that win-win scenarios exist by shifting production from pulpwood to sawlogs; on some of the stands in the RPD and sawlog scenarios, both carbon pools and avoided emissions increased from the baseline simultaneously. On the opposite, the shift from packaging material to energy use caused the carbon pools and the avoided emissions to diminish from the baseline. Hence the use of virgin fibres for energy purposes, rather than forest industry feedstock biomass, should be critically judged if optional to each other. Managing the stands according to the silvicultural guidelines developed by the Forestry Development Centre Tapio provided the least climatic benefits, showing considerably lower carbon pools and avoided emissions. This seems interesting and worth noting, as the guidelines are the current basis for the forest management practices in Finland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to investigate the stand structure and succession dynamics in Scots pine (Pinus sylvestris L.) stands on pristine peatlands and in Scots pine and Norway spruce (Picea abies (L.) Karst.) dominated stands on drained peatlands. Furthermore, my focus was on characterising how the inherent and environmental factors and the intermediate thinnings modify the stand structure and succession. For pristine peatlands, the study was based on inventorial stand data, while for drained peatlands, longitudinal data from repeatedly measured stands were utilised. The studied sites covered the most common peatland site types in Finland. They were classified into two categories according to the ecohydrological properties related to microsite variation and nutrient levels within sites. Tree DBH and age distributions in relation to climate and site type were used to study the stand dynamics on pristine sites. On drained sites, the Weibull function was used to parameterise the DBH distributions and mixed linear models were constructed to characterise the impacts of different ecological factors on stand dynamics. On pristine peatlands, both climate and the ecohydrology of the site proved to be crucial factors determining the stand structure and its dynamics. Irrespective of the vegetation succession, enhanced site productivity and increased stand stocking they significantly affected the stand dynamics also on drained sites. On the most stocked sites on pristine peatlands the inter-tree competition seemed to also be a significant factor modifying stand dynamics. Tree age and size diversity increased with stand age, but levelled out in the long term. After drainage, the stand structural unevenness increased due to the regeneration and/or ingrowth of the trees. This increase was more pronounced on sparsely forested composite sites than on more fully stocked genuine forested sites in Scots pine stands, which further undergo the formation of birch and spruce undergrowth beneath the overstory as succession proceeds. At 20-30 years after drainage the structural heterogeneity started to decrease, indicating increased inter-tree competition, which increased the mortality of suppressed trees within stand. Peatland stands are more dynamic than anticipated and are generally not characterized by a balanced, self-perpetuating structure. On pristine sites, various successional pathways are possible, whereas on drained sites the succession has more uniform trend. Typically, stand succession proceeds without any distinct developmental stages on pristine peatlands, whereas on drained peatlands, at least three distinct stages could be identified. Thinnings had only little impact on the stand succession. The new information on stand dynamics may be utilised, e.g. in forest management planning to facilitate the allocation of the growth resources to the desired crop component by appropriate silvicultural treatments, as well as assist in assessing the effects of the climate change on the forested boreal peatlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immediate effects of two human-related vegetation disturbances, (1) green tree retention (GTR) patch felling and scarification by harrowing and (2) experimental understorey vegetation layer removal, were examined in boreal forest stands in Finland. Effects of GTR patch felling and scarification on tree uprootings, on coarse woody debris (CWD) and on epixylic plant community were followed in upland and in paludified forest types. Uprootings increased considerably during 2-3 years after the fellings and were more frequent (47%) in the paludified than in the upland forest (13%). Scarification reduced 68% of the CWD in the felling area. Cover and especially species richness of epixylics declined in the both areas during 1-2 years after the felling. The increasing size of GTR patch correlated positively with the species richness. Regeneration of understorey vegetation community and Vaccinium myrtillus and Vaccinium vitis-idaea after different removals of vegetation layers in an old-growth forest took four years. The regeneration occurred mainly by vegetative means and it was faster in the terms of species richness than in the cover. In the most severe treatment, recovery occurred merely by sexual reproduction. V. myrtillus recovered mainly by producing new shoots. V. vitis-idaea recovered faster than V. myrtillus, mainly by increasing length growth. For ecological reasons, use of larger GTR patches on paludified biotope would be recommendable. In felling areas, scarification by harrowing could be replaced with some other spot-wise method. After moderate intensity level disturbance, recovery occurs rapidly by vegetative regrowth of the dominating species. High level of intensity may prevent the recovery of vegetation community for years, while enabling also the genetic regeneration of the initial species. Local anthropogenic-related disturbances are currently increasing and they can interact during temporally short times, which should be taken in to account in the future forest management plans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ANNE HOLMA ADAPTATION IN TRIADIC BUSINESS RELATIONSHIP SETTINGS – A STUDY IN CORPORATE TRAVEL MANAGEMENT Business-to-business relationships form complicated networks that function in an increasingly dynamic business environment. This study addresses the complexity of business relationships, both when it comes to the core phenomenon under investigation, adaptation, and the structural context of the research, a triadic relationship setting. In business research, adaptation is generally regarded as a dyadic phenomenon, even though it is well recognised that dyads do not exist isolated from the wider network. The triadic approach to business relationships is especially relevant in cases where an intermediary is involved, and where all three actors are directly connected with each other. However, only a few business studies apply the triadic approach. In this study, the three dyadic relationships in triadic relationship settings are investigated in the context of the other two dyads to which each is connected. The focus is on the triads as such, and on the connections between its actors. Theoretically, the study takes its stand in relationship marketing. The study integrates theories and concepts from two approaches, the industrial network approach by the Industrial marketing and purchasing group, and the Service marketing and management approach by the Nordic School. Sociological theories are used to understand the triadic relationship setting. The empirical context of the study is corporate travel management. The study is a retrospective case study, where the data is collected by in-depth interviews with key informants from an industrial enterprise and its travel agency and service supplier partners. The main theoretical contribution of the study concerns opening a new research area in relationship marketing by investigating adaptation in business relationships with a new perspective, and in a new context. This study provides a comprehensive framework to analyse adaptation in triadic business relationship settings. The analysis framework was created with the help of a systematic combining approach, which is based on abductive logic and continuous iteration between the theory and the case study results. The framework describes how adaptations initiate, and how they progress. The framework also takes into account how adaptations spread in triadic relationship settings, i.e. how adaptations attain all three actors of the triad. Furthermore, the framework helps to investigate the outcomes of the adaptations for individual firms, for dyadic relationships, and for the triads. The study also provides concepts and classification that can be used when evaluating adaptation and relationship development in both dyadic and triadic relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis report attempts to improve the models for predicting forest stand structure for practical use, e.g. forest management planning (FMP) purposes in Finland. Comparisons were made between Weibull and Johnson s SB distribution and alternative regression estimation methods. Data used for preliminary studies was local but the final models were based on representative data. Models were validated mainly in terms of bias and RMSE in the main stand characteristics (e.g. volume) using independent data. The bivariate SBB distribution model was used to mimic realistic variations in tree dimensions by including within-diameter-class height variation. Using the traditional method, diameter distribution with the expected height resulted in reduced height variation, whereas the alternative bivariate method utilized the error-term of the height model. The lack of models for FMP was covered to some extent by the models for peatland and juvenile stands. The validation of these models showed that the more sophisticated regression estimation methods provided slightly improved accuracy. A flexible prediction and application for stand structure consisted of seemingly unrelated regression models for eight stand characteristics, the parameters of three optional distributions and Näslund s height curve. The cross-model covariance structure was used for linear prediction application, in which the expected values of the models were calibrated with the known stand characteristics. This provided a framework to validate the optional distributions and the optional set of stand characteristics. Height distribution is recommended for the earliest state of stands because of its continuous feature. From the mean height of about 4 m, Weibull dbh-frequency distribution is recommended in young stands if the input variables consist of arithmetic stand characteristics. In advanced stands, basal area-dbh distribution models are recommended. Näslund s height curve proved useful. Some efficient transformations of stand characteristics are introduced, e.g. the shape index, which combined the basal area, the stem number and the median diameter. Shape index enabled SB model for peatland stands to detect large variation in stand densities. This model also demonstrated reasonable behaviour for stands in mineral soils.