2 resultados para Sr Isotopic Ratio

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work examines stable isotope ratios of carbon, oxygen and hydrogen in annual growth rings of trees. Isotopic composition in wood cellulose is used as a tool to study past climate. The method benefits from the accurate and precise dating provided by dendrochronology. In this study the origin, nature and the strength of climatic correlations are studied on different temporal scales and at different sites in Finland. The origin of carbon isotopic signal is in photosynthetic fractionation. The basic physical and chemical fractionations involved are reasonably well understood. This was confirmed by measuring instantaneous photosynthetic discrimination on Scots pine (Pinus sylvestris L.). The internal conductance of CO2 was recognized to have a significant impact on the observed fractionation, and further investigations are suggested to quantify its role in controlling the isotopic signal of photosynthates. Isotopic composition of the produced biomass can potentially be affected by variety of external factors that induce physiological changes in trees. Response of carbon isotopic signal in tree ring cellulose to changes in resource availability was assessed in a manipulation experiment. It showed that the signal was relatively stable despite of changes in water and nitrogen availability to the tree. Palaeoclimatic reconstructions are typically based on functions describing empirical relationship between isotopic and climatic parameters. These empirical relationships may change depending on the site conditions, species and timeframe studied. Annual variation in Scots pine tree ring carbon and oxygen isotopic composition was studied in northern and in central eastern Finland and annual variation in tree ring latewood carbon, oxygen and hydrogen isotopic ratio in Oak (Quercus robur L.) was studied in southern Finland. In all of the studied sites at least one of the studied isotope ratios was shown to record climate strongly enough to be used in climatic reconstructions. Using the observed relationships, four-century-long climate reconstructions from living Scots pine were created for northern and central eastern Finland. Also temporal stability of the relationships between three proxy indicators, tree ring growth and carbon and oxygen isotopic composition was studied during the four-hundred-year period. Isotope ratios measured from tree rings in Finland were shown to be sensitive indicators of climate. Increasing understanding of environmental controls and physiological mechanisms affecting tree ring isotopic composition will make possible more accurate interpretation of isotope data. This study also demonstrated that by measuring multiple isotopes and physical proxies from the same tree rings, additional information on tree physiology can be obtained. Thus isotopic ratios measured from tree ring cellulose provide means to improve the reliability of climate reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palaeoenvironments of the latter half of the Weichselian ice age and the transition to the Holocene, from ca. 52 to 4 ka, were investigated using isotopic analysis of oxygen, carbon and strontium in mammal skeletal apatite. The study material consisted predominantly of subfossil bones and teeth of the woolly mammoth (Mammuthus primigenius Blumenbach), collected from Europe and Wrangel Island, northeastern Siberia. All samples have been radiocarbon dated, and their ages range from >52 ka to 4 ka. Altogether, 100 specimens were sampled for the isotopic work. In Europe, the studies focused on the glacial palaeoclimate and habitat palaeoecology. To minimise the influence of possible diagenetic effects, the palaeoclimatological and ecological reconstructions were based on the enamel samples only. The results of the oxygen isotope analysis of mammoth enamel phosphate from Finland and adjacent nortwestern Russia, Estonia, Latvia, Lithuania, Poland, Denmark and Sweden provide the first estimate of oxygen isotope values in glacial precipitation in northern Europe. The glacial precipitation oxygen isotope values range from ca. -9.2±1.5 in western Denmark to -15.3 in Kirillov, northwestern Russia. These values are 0.6-4.1 lower than those in present-day precipitation, with the largest changes recorded in the currently marine influenced southern Sweden and the Baltic region. The new enamel-derived oxygen isotope data from this study, combined with oxygen isotope records from earlier investigations on mammoth tooth enamel and palaeogroundwaters, facilitate a reconstruction of the spatial patterns of the oxygen isotope values of precipitation and palaeotemperatures over much of Europe. The reconstructed geographic pattern of oxygen isotope levels in precipitation during 52-24 ka reflects the progressive isotopic depletion of air masses moving northeast, consistent with a westerly source of moisture for the entire region, and a circulation pattern similar to that of the present-day. The application of regionally varied δ/T-slopes, estimated from palaeogroundwater data and modern spatial correlations, yield reasonable estimates of glacial surface temperatures in Europe and imply 2-9°C lower long-term mean annual surface temperatures during the glacial period. The isotopic composition of carbon in the enamel samples indicates a pure C3 diet for the European mammoths, in agreement with previous investigations of mammoth ecology. A faint geographical gradient in the carbon isotope values of enamel is discernible, with more negative values in the northeast. The spatial trend is consistent with the climatic implications of the enamel oxygen isotope data, but may also suggest regional differences in habitat openness. The palaeogeographical changes caused by the eustatic rise of global sea level at the end of the Weichselian ice age was investigated on Wrangel Island, using the strontium isotope (Sr-87/Sr-86) ratios in the skeletal apatite of the local mammoth fauna. The diagenetic evaluations suggest good preservation of the original Sr isotope ratios, even in the bone specimens included in the study material. To estimate present-day environmental Sr isotope values on Wrangel Island, bioapatite samples from modern reindeer and muskoxen, as well as surface waters from rivers and ice wedges were analysed. A significant shift towards more radiogenic bioapatite Sr isotope ratios, from 0.71218 ± 0.00103 to 0.71491 ± 0.00138, marks the beginning of the Holocene. This implies a change in the migration patterns of the mammals, ultimately reflecting the inundation of the mainland connection and isolation of the population. The bioapatite Sr isotope data supports published coastline reconstructions placing the time of separation from the mainland to ca. 10-10.5 ka ago. The shift towards more radiogenic Sr isotope values in mid-Holocene subfossil remains after 8 ka ago reflects the rapid rise of the sea level from 10 to 8 ka, resulting in a considerable reduction of the accessible range area on the early Wrangel Island.