4 resultados para Spot sizes
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.
Resumo:
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.
Resumo:
Lahopuun määrästä ja sijoittumisesta ollaan kiinnostuneita paitsi elinympäristöjen monimuotoisuuden, myös ilmakehän hiilen varastoinnin kannalta. Tutkimuksen tavoitteena oli kehittää aluepohjainen laserkeilausdataa hyödyntävä malli lahopuukohteiden paikantamiseksi ja lahopuun määrän estimoimiseksi. Samalla tutkittiin mallin selityskyvyn muuttumista mallinnettavan ruudun kokoa suurennettaessa. Tutkimusalue sijaitsi Itä-Suomessa Sonkajärvellä ja koostui pääasiassa nuorista hoidetuista talousmetsistä. Tutkimuksessa käytettiin harvapulssista laserkeilausdataa sekä kaistoittain mitattua maastodataa kuolleesta puuaineksesta. Aineisto jaettiin siten, että neljäsosa datasta oli käytössä mallinnusta varten ja loput varattiin valmiiden mallien testaamiseen. Lahopuun mallintamisessa käytettiin sekä parametrista että ei-parametrista mallinnusmenetelmää. Logistisen regression avulla erikokoisille (0,04, 0,20, 0,32, 0,52 ja 1,00 ha) ruuduille ennustettiin todennäköisyys lahopuun esiintymiselle. Muodostettujen mallien selittävät muuttujat valittiin 80 laserpiirteen ja näiden muunnoksien joukosta. Mallien selittävät muuttujat valittiin kolmessa vaiheessa. Aluksi muuttujia tarkasteltiin visuaalisesti kuvaamalla ne lahopuumäärän suhteen. Ensimmäisessä vaiheessa sopivimmiksi arvioitujen muuttujien selityskykyä testattiin mallinnuksen toisessa vaiheessa yhden muuttujan mallien avulla. Lopullisessa usean muuttujan mallissa selittävien muuttujien kriteerinä oli tilastollinen merkitsevyys 5 % riskitasolla. 0,20 hehtaarin ruutukoolle luotu malli parametrisoitiin muun kokoisille ruuduille. Logistisella regressiolla toteutetun parametrisen mallintamisen lisäksi, 0,04 ja 1,0 hehtaarin ruutukokojen aineistot luokiteltiin ei-parametrisen CART-mallinnuksen (Classification and Regression Trees) avulla. CARTmenetelmällä etsittiin aineistosta vaikeasti havaittavia epälineaarisia riippuvuuksia laserpiirteiden ja lahopuumäärän välillä. CART-luokittelu tehtiin sekä lahopuustoisuuden että lahopuutilavuuden suhteen. CART-luokituksella päästiin logistista regressiota parempiin tuloksiin ruutujen luokituksessa lahopuustoisuuden suhteen. Logistisella mallilla tehty luokitus parani ruutukoon suurentuessa 0,04 ha:sta(kappa 0,19) 0,32 ha:iin asti (kappa 0,38). 0,52 ha:n ruutukoolla luokituksen kappa-arvo kääntyi laskuun (kappa 0,32) ja laski edelleen hehtaarin ruutukokoon saakka (kappa 0,26). CART-luokitus parani ruutukoon kasvaessa. Luokitustulokset olivat logistista mallinnusta parempia sekä 0,04 ha:n (kappa 0,24) että 1,0 ha:n (kappa 0,52) ruutukoolla. CART-malleilla määritettyjen ruutukohtaisten lahopuutilavuuksien suhteellinen RMSE pieneni ruutukoon kasvaessa. 0,04 hehtaarin ruutukoolla koko aineiston lahopuumäärän suhteellinen RMSE oli 197,1 %, kun hehtaarin ruutukoolla vastaava luku oli 120,3 %. Tämän tutkimuksen tulosten perusteella voidaan todeta, että maastossa mitatun lahopuumäärän ja tutkimuksessa käytettyjen laserpiirteiden yhteys on pienellä ruutukoolla hyvin heikko, mutta vahvistuu hieman ruutukoon kasvaessa. Kun mallinnuksessa käytetty ruutukoko kasvaa, pienialaisten lahopuukeskittymien havaitseminen kuitenkin vaikeutuu. Tutkimuksessa kohteen lahopuustoisuus pystyttiin kartoittamaan kohtuullisesti suurella ruutukoolla, mutta pienialaisten kohteiden kartoittaminen ei onnistunut käytetyillä menetelmillä. Pienialaisten kohteiden paikantaminen laserkeilauksen avulla edellyttää jatkotutkimusta erityisesti tiheäpulssisen laserdatan käytöstä lahopuuinventoinneissa.