7 resultados para Spin degrees of freedom
em Helda - Digital Repository of University of Helsinki
Resumo:
The aim of this study was to look at the freedom of ordinary people as they construct it. The scope, however, was limited to contemporary Finnish sailors and their freedom discourses. The study belongs to the field of the anthropology of religions, which is part of comparative religion. Worldview, which is one of the key concepts in comparative religion, provided the broader theoretical basis of the study. The data consisted of 92 interviews with Finnish professional seafarers conducted in 1996, 1999, 2000 and 2005, field journals that were written during two periods of fieldwork in 1996 and 1999-2000, and correspondence with some of the seafarers during 1999-2005. The analysis process incorporated new rhetoric and metaphor theory. The thesis is in three parts. The first part discusses the methodological challenges of this type of ethnography, the second an ethnography of modern Finnish shipworld focuses on work, organization, hierarchy and gender, and the third part discusses the freedom concepts of seafarers. It was found that seafarers use two kinds of freedom discourse. The first is in line with the stereotypical Jack Tar, a free-roving sailor who is not bound to land and its mundane routines, and the second views shipworld as freedom from freedom, meaning one is not responsible for one s own actions because one is not free to make a choice. It was also found that seafarers are well aware of the stereotypical images that are attached to their profession: they not only deny them, but also utilize, reflect on and construct them.
Resumo:
There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.
Resumo:
The aim of this study was to look at the metaphors contemporary merchant seamen use for their ship and for their life at sea. The larger theoretical framework of the study consisted of worldview, which is one of the key concepts of comparative religion. The data for the study consisted of 91 interviews with Finnish professional seafarers that were conducted in 1996, 1999, and 2000, field journals that were written during two periods of fieldwork in 1996 and 1999-2000, and correspondence with some of the Finnish seafarers during 1999-2002. The data was analyzed by using metaphor theory. The study consists of two parts. The first part is ethnography of modern Finnish shipworld. This entails work, organization, hierarchy and gender. The second part discusses the metaphors the seafarers use. The study belongs to the field of anthropology of religions which is part of comparative religion.
Resumo:
The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.
Resumo:
In this thesis we consider the phenomenology of supergravity, and in particular the particle called "gravitino". We begin with an introductory part, where we discuss the theories of inflation, supersymmetry and supergravity. Gravitino production is then investigated into details, by considering the research papers here included. First we study the scattering of massive W bosons in the thermal bath of particles, during the period of reheating. We show that the process generates in the cross section non trivial contributions, which eventually lead to unitarity breaking above a certain scale. This happens because, in the annihilation diagram, the longitudinal degrees of freedom in the propagator of the gauge bosons disappear from the amplitude, by virtue of the supergravity vertex. Accordingly, the longitudinal polarizations of the on-shell W become strongly interacting in the high energy limit. By studying the process with both gauge and mass eigenstates, it is shown that the inclusion of diagrams with off-shell scalars of the MSSM does not cancel the divergences. Next, we approach cosmology more closely, and study the decay of a scalar field S into gravitinos at the end of inflation. Once its mass is comparable to the Hubble rate, the field starts coherent oscillations about the minimum of its potential and decays pertubatively. We embed S in a model of gauge mediation with metastable vacua, where the hidden sector is of the O'Raifeartaigh type. First we discuss the dynamics of the field in the expanding background, then radiative corrections to the scalar potential V(S) and to the Kähler potential are calculated. Constraints on the reheating temperature are accordingly obtained, by demanding that the gravitinos thus produced provide with the observed Dark Matter density. We modify consistently former results in the literature, and find that the gravitino number density and T_R are extremely sensitive to the parameters of the model. This means that it is easy to account for gravitino Dark Matter with an arbitrarily low reheating temperature.
Resumo:
The first quarter of the 20th century witnessed a rebirth of cosmology, study of our Universe, as a field of scientific research with testable theoretical predictions. The amount of available cosmological data grew slowly from a few galaxy redshift measurements, rotation curves and local light element abundances into the first detection of the cos- mic microwave background (CMB) in 1965. By the turn of the century the amount of data exploded incorporating fields of new, exciting cosmological observables such as lensing, Lyman alpha forests, type Ia supernovae, baryon acoustic oscillations and Sunyaev-Zeldovich regions to name a few. -- CMB, the ubiquitous afterglow of the Big Bang, carries with it a wealth of cosmological information. Unfortunately, that information, delicate intensity variations, turned out hard to extract from the overall temperature. Since the first detection, it took nearly 30 years before first evidence of fluctuations on the microwave background were presented. At present, high precision cosmology is solidly based on precise measurements of the CMB anisotropy making it possible to pinpoint cosmological parameters to one-in-a-hundred level precision. The progress has made it possible to build and test models of the Universe that differ in the way the cosmos evolved some fraction of the first second since the Big Bang. -- This thesis is concerned with the high precision CMB observations. It presents three selected topics along a CMB experiment analysis pipeline. Map-making and residual noise estimation are studied using an approach called destriping. The studied approximate methods are invaluable for the large datasets of any modern CMB experiment and will undoubtedly become even more so when the next generation of experiments reach the operational stage. -- We begin with a brief overview of cosmological observations and describe the general relativistic perturbation theory. Next we discuss the map-making problem of a CMB experiment and the characterization of residual noise present in the maps. In the end, the use of modern cosmological data is presented in the study of an extended cosmological model, the correlated isocurvature fluctuations. Current available data is shown to indicate that future experiments are certainly needed to provide more information on these extra degrees of freedom. Any solid evidence of the isocurvature modes would have a considerable impact due to their power in model selection.
Resumo:
When ordinary nuclear matter is heated to a high temperature of ~ 10^12 K, it undergoes a deconfinement transition to a new phase, strongly interacting quark-gluon plasma. While the color charged fundamental constituents of the nuclei, the quarks and gluons, are at low temperatures permanently confined inside color neutral hadrons, in the plasma the color degrees of freedom become dominant over nuclear, rather than merely nucleonic, volumes. Quantum Chromodynamics (QCD) is the accepted theory of the strong interactions, and confines quarks and gluons inside hadrons. The theory was formulated in early seventies, but deriving first principles predictions from it still remains a challenge, and novel methods of studying it are needed. One such method is dimensional reduction, in which the high temperature dynamics of static observables of the full four-dimensional theory are described using a simpler three-dimensional effective theory, having only the static modes of the various fields as its degrees of freedom. A perturbatively constructed effective theory is known to provide a good description of the plasma at high temperatures, where asymptotic freedom makes the gauge coupling small. In addition to this, numerical lattice simulations have, however, shown that the perturbatively constructed theory gives a surprisingly good description of the plasma all the way down to temperatures a few times the transition temperature. Near the critical temperature, the effective theory, however, ceases to give a valid description of the physics, since it fails to respect the approximate center symmetry of the full theory. The symmetry plays a key role in the dynamics near the phase transition, and thus one expects that the regime of validity of the dimensionally reduced theories can be significantly extended towards the deconfinement transition by incorporating the center symmetry in them. In the introductory part of the thesis, the status of dimensionally reduced effective theories of high temperature QCD is reviewed, placing emphasis on the phase structure of the theories. In the first research paper included in the thesis, the non-perturbative input required in computing the g^6 term in the weak coupling expansion of the pressure of QCD is computed in the effective theory framework at an arbitrary number of colors. The two last papers on the other hand focus on the construction of the center-symmetric effective theories, and subsequently the first non-perturbative studies of these theories are presented. Non-perturbative lattice simulations of a center-symmetric effective theory for SU(2) Yang-Mills theory show --- in sharp contrast to the perturbative setup --- that the effective theory accommodates a phase transition in the correct universality class of the full theory. This transition is seen to take place at a value of the effective theory coupling constant that is consistent with the full theory coupling at the critical temperature.