32 resultados para Soluble cellulose, carboxy methyl cellulose, carbohydrates
em Helda - Digital Repository of University of Helsinki
Resumo:
Even though cellulose is the most abundant polymer on Earth, its utilisation has some limitations regarding its efficient use in the production of bio-based materials. It is quite clear from statistics that only a relatively small fraction of cellulose is used for the production of commodity materials and chemicals. This fact was the driving force in our research into understanding, designing, synthesising and finding new alternative applications for this well-known but underused biomaterial. This thesis focuses on the developing advanced materials and products from cellulose by using novel approaches. The aim of this study was to investigate and explore the versatility of cellulose as a starting material for the synthesis of cellulose-based materials, to introduce new synthetic methods for cellulose modification, and to widen the already existing synthetic approaches. Due to the insolubility of cellulose in organic solvents and in water, ionic liquids were applied extensively as the reaction media in the modification reactions. Cellulose derivatives were designed and fine-tuned to obtain desired properties. This was done by altering the inherent hydrogen bond network by introducing different substituents. These substituents either prevented spontaneous formation of hydrogen bonding completely or created new interactions between the cellulose chains. This enabled spontaneous self-assembly leading to supramolecular structures. It was also demonstrated that the material properties of cellulose can be modified even those molecules with a low degree of substitution when highly hydrophobic films and aerogels were prepared from fatty acid derivatives of nanocellulose. Development towards advanced cellulose-based materials was demostrated by synthesising chlorophyllcellulose derivatives that showed potential in photocurrent generation systems. In addition, liquid crystalline cellulose derivatives prepared in this study, showed to function as UV-absorbers in paper.
Resumo:
Wood is an important material for the construction and pulping industries. Using x-ray diffraction the microfibril angle of Sitka spruce wood was studied in the first part of this thesis. Sitka spruce (Picea sitchensis [Bong.] Carr.) is native to the west coast of North America, but due to its fast growth rate, it has also been imported to Europe. So far, its nanometre scale properties have not been systematically characterised. In this thesis the microfibril angle of Sitka spruce was shown to depend significantly on the origin of the tree in the first annual rings near the pith. Wood can be further processed to separate lignin from cellulose and hemicelluloses. Solid cellulose can act as a reducer for metal ions and it is also a porous support for nanoparticles. By chemically reducing nickel or copper in the solid cellulose support it is possible to get small nanoparticles on the surfaces of the cellulose fibres. Cellulose supported metal nanoparticles can potentially be used as environmentally friendly catalysts in organic chemistry reactions. In this thesis the size of the nickel and copper containing nanoparticles were studied using anomalous small-angle x-ray scattering and wide-angle x-ray scattering. The anomalous small-angle x-ray scattering experiments showed that the crystallite size of the copper oxide nanoparticles was the same as the size of the nanoparticles, so the nanoparticles were single crystals. The nickel containing nanoparticles were amorphous, but crystallised upon heating. The size of the nanoparticles was observed to be smaller when the reduction of nickel was done in aqueous ammonium hydrate medium compared to reduction made in aqueous solution. Lignin is typically seen as the side-product of wood industries. Lignin is the second most abundant natural polymer on Earth, and it possesses potential to be a useful material for many purposes in addition to being an energy source for the pulp mills. In this thesis, the morphology of several lignins, which were produced by different separation methods from wood, was studied using small-angle and ultra small-angle x-ray scattering. It was shown that the fractal model previously proposed for the lignin structure does not apply to most of the extracted lignin types. The only lignin to which the fractal model could be applied was kraft lignin. In aqueous solutions the average shape of the low molar mass kraft lignin particles was observed to be elongated and flat. The average shape does not necessarily correspond to the shape of the individual particles because of the polydispersity of the fraction and due to selfassociation of the particles. Lignins, and especially lignosulfonate, have many uses as dispersants, binders and emulsion stabilisers. In this thesis work the selfassociation of low molar mass lignosulfonate macromolecules was observed using small-angle x-ray scattering. By taking into account the polydispersity of the studied lignosulfonate fraction, the shape of the lignosulfonate particles was determined to be flat by fitting an oblate ellipsoidal model to the scattering intensity.
Resumo:
Since 1997 the Finnish Jabal Haroun Project (FJHP) has studied the ruins of the monastery and pilgrimage complex (Gr. oikos) of Aaron located on a plateau of the Mountain of Prophet Aaron, Jabal an-Nabi Harûn, ca. 5 km to the south-west of the UNESCO World Heritage site of Petra in Jordan. The state of conservation and the damaging processes affecting the stone structures of the site are studied in this M.A. thesis. The chapel was chosen as an example, as it represents the phasing and building materials of the entire site. The aim of this work is to act as a preliminary study with regards to the planning of long-term conservation at the site. The research is empirical in nature. The condition of the stones in the chapel walls was mapped using the Illustrated Glossary on Stone Deterioration, by the ICOMOS International Scientific Committee for Stone. This glossary combines several standards and systems of damage mapping used in the field. Climatic conditions (temperature and RH %) were monitored for one year (9/2005-8/2006) using a HOBO Microstation datalogger. The measurements were compared with contemporary measurements from the nearest weather station in Wadi Musa. Salts in the stones were studied by taking samples from the stone surfaces by scraping and with the “Paper Pulp”-method; with a poultice of wet cellulose fiber (Arbocel BC1000) and analyzing what main types of salts were to be found in the samples. The climatic conditions on the mountain were expected to be rapidly changing and to differ clearly from conditions in the neighboring areas. The rapid changes were confirmed, but the values did not differ as much as expected from those nearby: the 12 months monitored had average temperatures and were somewhat drier than average. Earlier research in the area has shown that the geological properties of the stone material influence its deterioration. The damage mapping showed clearly, that salts are also a major reason for stone weathering. The salt samples contained several salt combinations, whose behavior in the extremely unstable climatic conditions is difficult to predict. Detailed mapping and regular monitoring of especially the structures, that are going remain exposed, is recommended in this work.
Resumo:
The aim of this thesis was to study what kind of home-made menstrual pads were used in the early 20th century in Finland, how the home-made pads were made and which techniques and materials were used. The use and taking care of menstrual pads were also explored. The history of menstrual pads has been studied in Sweden, Germany and United States but none of those studies has concentrated on home-made pads. Instead, there are many studies about womanhood and menstruation. In many studies home-made menstrual pads are only briefly mentioned. Menstrual pads were not commonly used in Finland at the beginning of the 20th century, but already in the 1940s the use of menstrual pads had become common in every stratum of society. Home-made menstrual pads were used even until the 1960s. In Finland, factory-made disposable menstrual pads became common only in the 1930s and they were only slowly accepted. The study material consisted of nine interviews, three archival inquiries, health care guidebooks from 1893 to 1943 and authentic menstrual pads, menstrual belts and other objects related to them. The interviewed women were born between 1915 and 1939. The narrative approach was used in the study and it also guided the analysis. The interview and archival data were studied according to the basic rules of oral history studies. Literature consisted of publications from several disciplines. The extensive primary material played the most important role in this study. The reconstructions of the menstrual pads were made according to the interviewed women s advice. In Finland there were innumerable variations of home-made menstrual pads. The pads were most commonly crocheted and knitted either by hand or by knitting machine. Pads were also sewn of cloth, old bed linen or old underwear. The menstrual pads were self-made or made by a female relative. Word of mouth was important in spreading information on how to make pads, because there were hardly any instructions available. The biggest pads were 54 cm long and 13 cm wide. The most widely used pad model was a rectangle, which had triangle-shaped ends with a buttonhole or a loop. The pad was attached to the menstrual belt or to the buttons of the suspender belt. Knitted and crocheted pads had one, two or three layers. In sewn pads, there could be even more layers. Cellulose wadding or pieces of cloth could be placed inside the pad to increase the absorption ability. The experiences of the comfort of self-made pads varied. The crocheted and sewn pads were found chafing, knitted ones were found soft and comfortable. The menstrual pads were laborious to wash and boil in lye water. Therefore disposable pads made everyday life easier. The home-made menstrual pads were part of a unique tradition of handicrafts and folk culture. Hand-made pads were one of the most common handicraft products and were a part of every woman s life. Even so, the menstrual pads were unnoticeable. The large number of variations was probably caused by the silence around menstrual topics and by the lack of instructions for making pads. Variations are also explained by the uniqueness of every handicraft product. In Finland the home-made pads were used until relatively recent times. This was caused by the conditions of wartime and the following years and the rarity of commercial pads. Furthermore, until the late 20th century Finland was an agricultural society where all innovations spread slowly. Home-made menstrual pad was a secret handicraft of women and every woman needed to know how to make it by herself.
Variation in tracheid cross-sectional dimensions and wood viscoelasticity extent and control methods
Resumo:
Printing papers have been the main product of the Finnish paper industry. To improve properties and economy of printing papers, controlling of tracheid cross-sectional dimensions and wood viscoelasticity are examined in this study. Controlling is understood as any procedure which yields raw material classes with distinct properties and small internal variation. Tracheid cross-sectional dimensions, i.e., cell wall thickness and radial and tangential diameters can be controlled with methods such as sorting wood into pulpwood and sawmill chips, sorting of logs according to tree social status and fractionation of fibres. These control methods were analysed in this study with simulations, which were based on measured tracheid cross-sectional dimensions. A SilviScan device was used to measure the data set from five Norway spruce (Picea abies) and five Scots pine (Pinus sylvestris) trunks. The simulation results indicate that the sawmill chips and top pulpwood assortments have quite similar cross-sectional dimensions. Norway spruce and Scots pine are on average also relatively similar in their cross-sectional dimensions. The distributions of these species are somewhat different, but from a practical point of view, the differences are probably of minor importance. The controlling of tracheid cross-sectional dimensions can be done most efficiently with methods that can separate fibres into earlywood and latewood. Sorting of logs or partitioning of logs into juvenile and mature wood were markedly less efficient control methods than fractionation of fibres. Wood viscoelasticity affects energy consumption in mechanical pulping, and is thus an interesting control target when improving energy efficiency of the process. A literature study was made to evaluate the possibility of using viscoelasticity in controlling. The study indicates that there is considerable variation in viscoelastic properties within tree species, but unfortunately, the viscoelastic properties of important raw material lots such as top pulpwood or sawmill chips are not known. Viscoelastic properties of wood depend mainly on lignin, but also on microfibrillar angle, width of cellulose crystals and tracheid cross-sectional dimensions.
Resumo:
Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.
Resumo:
White-rot fungi are wood degrading organisms that are able to decompose all wood polymers; lignin, cellulose and hemicellulose. Especially the selective white-rot fungi that decompose preferentially wood lignin are promising for biopulping applications. In biopulping the pretreatment of wood chips with white-rot fungi enhances the subsequent pulping step and substantially reduces the refining energy consumption in mechanical pulping. Because it is not possible to carry out biopulping in industrial scale as a closed process it has been necessary to search for new selective strains of white-rot fungi which naturally occur in Finland and cause selective white-rot of Finnish wood raw-material. In a screening of 300 fungal strains a rare polypore, Physisporinus rivulosus strain T241i isolated from a forest burn research site, was found to be a selective lignin degrader and promising for the use in biopulping. Since selective lignin degradation is apparently essential for biopulping, knowledge on lignin-modifying enzymes and the regulation of their production by a biopulping fungus is needed. White-rot fungal enzymes that participate in lignin degradation are laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP) and hydrogen peroxide forming enzymes. In this study, P. rivulosus was observed to produce MnP, laccase and oxalic acid during growth on wood chips. In liquid cultures manganese and veratryl alcohol increased the production of acidic MnP isoforms detected also in wood chip cultures. Laccase production by P. rivulosus was low unless the cultures were supplemented with sawdust and charred wood, the components of natural growth environment of the fungus. In white-rot fungi the lignin-modifying enzymes are typically present as multiple isoforms. In this study, two MnP encoding genes, mnpA and mnpB, were cloned and characterized from P. rivulosus T241i. Analysis of the N-terminal amino acid sequences of two purified MnPs and putative amino acid sequence of the two cloned mnp genes suggested that P. rivulosus possesses at least four mnp genes. The genes mnpA and mnpB markedly differ from each other by the gene length, sequence and intron-exon structure. In addition, their expression is differentially affected by the addition of manganese and veratryl alcohol. P. rivulosus produced laccase as at least two isoforms. The results of this study revealed that the production of MnP and laccase was differentially regulated in P. rivulosus, which ensures the efficient lignin degradation under a variety of environmental conditions.
Resumo:
Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.
Resumo:
Cellulose can be used as a renewable raw material for energy production. The utilization requires degradation of cellulose into glucose, which can be done with the aid of enzymatic hydrolysis. In this thesis, various x-ray methods were used to characterize sub-micrometer changes in microcrystalline cellulose during enzymatic hydrolysis to clarify the process and factors slowering it. The methods included wide-angle x-ray scattering (WAXS), small-angle x-ray scattering (SAXS) and x-ray microtomography. In addition, the samples were studied with transmission electron microscopy (TEM). The studied samples were hydrolyzed by enzymes of the Trichoderma reesei species for 6, 24, and 75 hours, which corresponded to 31 %, 58 %, and 68 % degrees of hydrolysis, respectively. Freeze-dried hydrolysis residues were measured with WAXS, SAXS and microtomography, whereas some of them were re-wetted for the wet SAXS and TEM measurements. The microtomography measurements showed a clear decrease in particle size in scale of tens of micrometers. In all the TEM pictures similar cylindrical and partly ramified structures were observed, independent of the hydrolysis time. The SAXS results were ambiguous and partly imprecise, but showed a change in the structure of wet samples in scale of 10-30 nm. According to the WAXS results, the degrees of crystallinity and the crystal sizes remained the same. The gained results support the assuption, that the cellulosic particles are hydrolyzed mostly on their surface, since the enzymes are unable to penetrate into the nanopores of wet cellulose. The hydrolysis therefore proceeds quickly in easily accessible particles and leaves the unaccesible particles almost untouched. The structural changes observed in the SAXS measurements might correspond to slight loosening of the microfibril aggregates, which was seen only in the wet samples because of their different pore structure.