9 resultados para Sobolev orthogonal polynomials

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of three articles on Orlicz-Sobolev capacities. Capacity is a set function which gives information of the size of sets. Capacity is useful concept in the study of partial differential equations, and generalizations of exponential-type inequalities and Lebesgue point theory, and other topics related to weakly differentiable functions such as functions belonging to some Sobolev space or Orlicz-Sobolev space. In this thesis it is assumed that the defining function of the Orlicz-Sobolev space, the Young function, satisfies certain growth conditions. In the first article, the null sets of two different versions of Orlicz-Sobolev capacity are studied. Sufficient conditions are given so that these two versions of capacity have the same null sets. The importance of having information about null sets lies in the fact that the sets of capacity zero play similar role in the Orlicz-Sobolev space setting as the sets of measure zero do in the Lebesgue space and Orlicz space setting. The second article continues the work of the first article. In this article, it is shown that if a Young function satisfies certain conditions, then two versions of Orlicz-Sobolev capacity have the same null sets for its complementary Young function. In the third article the metric properties of Orlicz-Sobolev capacities are studied. It is usually difficult or impossible to calculate a capacity of a set. In applications it is often useful to have estimates for the Orlicz-Sobolev capacities of balls. Such estimates are obtained in this paper, when the Young function satisfies some growth conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research is based on the problems in secondary school algebra I have noticed in my own work as a teacher of mathematics. Algebra does not touch the pupil, it remains knowledge that is not used or tested. Furthermore the performance level in algebra is quite low. This study presents a model for 7th grade algebra instruction in order to make algebra more natural and useful to students. I refer to the instruction model as the Idea-based Algebra (IDEAA). The basic ideas of this IDEAA model are 1) to combine children's own informal mathematics with scientific mathematics ("math math") and 2) to structure algebra content as a "map of big ideas", not as a traditional sequence of powers, polynomials, equations, and word problems. This research project is a kind of design process or design research. As such, this project has three, intertwined goals: research, design and pedagogical practice. I also assume three roles. As a researcher, I want to learn about learning and school algebra, its problems and possibilities. As a designer, I use research in the intervention to develop a shared artefact, the instruction model. In addition, I want to improve the practice through intervention and research. A design research like this is quite challenging. Its goals and means are intertwined and change in the research process. Theory emerges from the inquiry; it is not given a priori. The aim to improve instruction is normative, as one should take into account what "good" means in school algebra. An important part of my study is to work out these paradigmatic questions. The result of the study is threefold. The main result is the instruction model designed in the study. The second result is the theory that is developed of the teaching, learning and algebra. The third result is knowledge of the design process. The instruction model (IDEAA) is connected to four main features of good algebra education: 1) the situationality of learning, 2) learning as knowledge building, in which natural language and intuitive thinking work as "intermediaries", 3) the emergence and diversity of algebra, and 4) the development of high performance skills at any stage of instruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quasiconformal mappings are natural generalizations of conformal mappings. They are homeomorphisms with 'bounded distortion' of which there exist several approaches. In this work we study dimension distortion properties of quasiconformal mappings both in the plane and in higher dimensional Euclidean setting. The thesis consists of a summary and three research articles. A basic property of quasiconformal mappings is the local Hölder continuity. It has long been conjectured that this regularity holds at the Sobolev level (Gehring's higher integrabilty conjecture). Optimal regularity would also provide sharp bounds for the distortion of Hausdorff dimension. The higher integrability conjecture was solved in the plane by Astala in 1994 and it is still open in higher dimensions. Thus in the plane we have a precise description how Hausdorff dimension changes under quasiconformal deformations for general sets. The first two articles contribute to two remaining issues in the planar theory. The first one concerns distortion of more special sets, for rectifiable sets we expect improved bounds to hold. The second issue consists of understanding distortion of dimension on a finer level, namely on the level of Hausdorff measures. In the third article we study flatness properties of quasiconformal images of spheres in a quantitative way. These also lead to nontrivial bounds for their Hausdorff dimension even in the n-dimensional case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the observation of electroweak single top quark production in 3.2  fb-1 of pp̅ collision data collected by the Collider Detector at Fermilab at √s=1.96  TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3-0.5+0.6(stat+sys)  pb, extract the value of the Cabibbo-Kobayashi-Maskawa matrix element |Vtb|=0.91-0.11+0.11(stat+sys)±0.07  (theory), and set a lower limit |Vtb|>0.71 at the 95% C.L., assuming mt=175  GeV/c2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the observation of electroweak single top quark production in 3.2 fb-1 of ppbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3+0.6-0.5(stat+sys) pb, extract the CKM matrix element value |Vtb|=0.91+0.11-0.11 (stat+sys)+-0.07(theory), and set a lower limit |Vtb|>0.71 at the 95% confidence level, assuming m_t=175 GeVc^2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.