2 resultados para Smart Phones

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensor networks represent an attractive tool to observe the physical world. Networks of tiny sensors can be used to detect a fire in a forest, to monitor the level of pollution in a river, or to check on the structural integrity of a bridge. Application-specific deployments of static-sensor networks have been widely investigated. Commonly, these networks involve a centralized data-collection point and no sharing of data outside the organization that owns it. Although this approach can accommodate many application scenarios, it significantly deviates from the pervasive computing vision of ubiquitous sensing where user applications seamlessly access anytime, anywhere data produced by sensors embedded in the surroundings. With the ubiquity and ever-increasing capabilities of mobile devices, urban environments can help give substance to the ubiquitous sensing vision through Urbanets, spontaneously created urban networks. Urbanets consist of mobile multi-sensor devices, such as smart phones and vehicular systems, public sensor networks deployed by municipalities, and individual sensors incorporated in buildings, roads, or daily artifacts. My thesis is that "multi-sensor mobile devices can be successfully programmed to become the underpinning elements of an open, infrastructure-less, distributed sensing platform that can bring sensor data out of their traditional close-loop networks into everyday urban applications". Urbanets can support a variety of services ranging from emergency and surveillance to tourist guidance and entertainment. For instance, cars can be used to provide traffic information services to alert drivers to upcoming traffic jams, and phones to provide shopping recommender services to inform users of special offers at the mall. Urbanets cannot be programmed using traditional distributed computing models, which assume underlying networks with functionally homogeneous nodes, stable configurations, and known delays. Conversely, Urbanets have functionally heterogeneous nodes, volatile configurations, and unknown delays. Instead, solutions developed for sensor networks and mobile ad hoc networks can be leveraged to provide novel architectures that address Urbanet-specific requirements, while providing useful abstractions that hide the network complexity from the programmer. This dissertation presents two middleware architectures that can support mobile sensing applications in Urbanets. Contory offers a declarative programming model that views Urbanets as a distributed sensor database and exposes an SQL-like interface to developers. Context-aware Migratory Services provides a client-server paradigm, where services are capable of migrating to different nodes in the network in order to maintain a continuous and semantically correct interaction with clients. Compared to previous approaches to supporting mobile sensing urban applications, our architectures are entirely distributed and do not assume constant availability of Internet connectivity. In addition, they allow on-demand collection of sensor data with the accuracy and at the frequency required by every application. These architectures have been implemented in Java and tested on smart phones. They have proved successful in supporting several prototype applications and experimental results obtained in ad hoc networks of phones have demonstrated their feasibility with reasonable performance in terms of latency, memory, and energy consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern smart phones often come with a significant amount of computational power and an integrated digital camera making them an ideal platform for intelligents assistants. This work is restricted to retail environments, where users could be provided with for example navigational in- structions to desired products or information about special offers within their close proximity. This kind of applications usually require information about the user's current location in the domain environment, which in our case corresponds to a retail store. We propose a vision based positioning approach that recognizes products the user's mobile phone's camera is currently pointing at. The products are related to locations within the store, which enables us to locate the user by pointing the mobile phone's camera to a group of products. The first step of our method is to extract meaningful features from digital images. We use the Scale- Invariant Feature Transform SIFT algorithm, which extracts features that are highly distinctive in the sense that they can be correctly matched against a large database of features from many images. We collect a comprehensive set of images from all meaningful locations within our domain and extract the SIFT features from each of these images. As the SIFT features are of high dimensionality and thus comparing individual features is infeasible, we apply the Bags of Keypoints method which creates a generic representation, visual category, from all features extracted from images taken from a specific location. A category for an unseen image can be deduced by extracting the corresponding SIFT features and by choosing the category that best fits the extracted features. We have applied the proposed method within a Finnish supermarket. We consider grocery shelves as categories which is a sufficient level of accuracy to help users navigate or to provide useful information about nearby products. We achieve a 40% accuracy which is quite low for commercial applications while significantly outperforming the random guess baseline. Our results suggest that the accuracy of the classification could be increased with a deeper analysis on the domain and by combining existing positioning methods with ours.