14 resultados para Signaling pathway
em Helda - Digital Repository of University of Helsinki
Resumo:
Primary pulmonary hypertension (PPH), or according to the recent classification idiopathic pulmonary hypertension (IPAH), is a rare, progressive disease of pulmonary vasculature leading to pulmonary hypertension and right heart failure. Most of the patients are sporadic but in about 6% of cases the disease is familial (FPPH). In 2000 two different groups identified the gene predisposing to PPH. This gene, Bone morphogenetic protein receptor type 2 (BMPR2), encodes a subunit of transforming growth factor β (TGF-β) receptor complex. There is a genetic connection between PPH and hereditary hemorrhagic telangiectasia (HHT), a bleeding disorder characterized by local telangiectasias and sometimes with pulmonary hypertension. In HHT, mutations in ALK1 (activin like kinase type 1) and Endoglin, another members of the TGF-β signaling pathway are found. In this study we identified all of the Finnish PPH patients for the years 1986-1999 using the hospital discharge registries of Finnish university hospitals. During this period we found a total of 59 confirmed PPH patients: 55 sporadic and 4 familial representing 3 different families. In 1999 the prevalence of PPH was 5.8 per million and the annual incidence varied between 0.2-1.3 per million. Among 28 PPH patients studied, heterozygous BMPR2 mutations were found in 12% (3/26) of sporadic patients and in 33% of the PPH families (1/3). All the mutations found were different. Large deletions of BMPR2 were excluded by single-stranded chain polymomorphism analysis. As a candidate gene approach we also studied ALK1, Endoglin, Bone Morphogenetic Receptor Type IA (BMPR1A or ALK3), Mothers Against Decapentaplegic Homolog 4 (SMAD4) and Serotonine Transporter Gene (SLC6A4) using single-strand conformational polymorphism (SSCP) analysis and direct sequencing. Among patients and family members studied, we found two mutations in ALK1 in two unrelated samples. We also identified all the HHT patients treated at the Department of Otorhinolaryngology at Helsinki University Central Hospital between the years of 1990-2005 and 8 of the patients were studied for Endoglin and ALK1 mutations using direct sequencing. A total of seven mutations were found and all the mutations were different. The absence of a founder mutation in the Finnish population in both PPH and HHT was somewhat surprising. This suggests that the mutations of BMPR2, ALK1 and Endoglin are quite young and the older mutations have been lost due to repetitive genetic bottlenecks and/or negative selection. Also, other genes than BMPR2 may be involved in the pathogenesis of PPH. No founder mutations were found in PPH or HHT and thus no simple genetic test is available for diagnostics.
Resumo:
Neurotrophic factors (NTFs) and the extracellular matrix (ECM) are important regulators of axonal growth and neuronal survival in mammalian nervous system. Understanding of the mechanisms of this regulation is crucial for the development of posttraumatic therapies and drug intervention in the injured nervous system. NTFs act as soluble, target-derived extracellular regulatory molecules for a wide range of physiological functions including axonal guidance and the regulation of programmed cell death in the nervous system. The ECM determines cell adhesion and regulates multiple physiological functions via short range cell-matrix interactions. The present work focuses on the mechanisms of the action of NTFs and the ECM on axonal growth and survival of cultured sensory neurons from dorsal root ganglia (DRG). We first examined signaling mechanisms of the action of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) on axonal growth. GDNF, neurturin (NRTN) and artemin (ART) but not persephin (PSPN) promoted axonal initiation in cultured DRG neurons from young adult mice. This effect required Src family kinase (SFK) activity. In neurons from GFRalpha2-deficient mice, NRTN did not significantly promote axonal initiation. GDNF and NRTN induced extensive lamellipodia formation on neuronal somata and growth cones. This study suggested that GDNF, NRTN and ARTN may serve as stimulators of nerve regeneration under posttraumatic conditions. Consequently we studied the convergence of signaling pathways induced by NTFs and the ECM molecule laminin in the intracellular signaling network that regulates axonal growth. We demonstrated that co-stimulation of DRG neurons with NTFs (GDNF, NRTN or nerve growth factor (NGF)) and laminin leads to axonal growth that requires activation of SFKs. A different, SFK-independent signaling pathway evoked axonal growth on laminin in the absence of the NTFs. In contrast, axonal branching was regulated by SFKs both in the presence and in the absence of NGF. We proposed and experimentally verified a Boolean model of the signaling network triggered by NTFs and laminin. Our results put forward an approach for predictable, Boolean logics-driven pharmacological manipulation of a complex signaling network. Finally we found that N-syndecan, the receptor for the ECM component HB-GAM was required for the survival of neonatal sensory neurons in vitro. We demonstrated massive cell death of cultured DRG neurons from mice deficient in the N-syndecan gene as compared to wild type controls. Importantly, this cell death could not be prevented by NGF the neurotrophin which activates multiple anti-apoptotic cascades in DRG neurons. The survival deficit was observed during first postnatal week. By contrast, DRG neurons from young adult N-syndecan knock-out mice exhibited normal survival. This study identifies a completely new syndecan-dependent type of signaling that regulates cell death in neurons.
Resumo:
Studies in both vertebrates and invertebrates have identified proteins of the Hedgehog (Hh) family of secreted signaling molecules as key organizers of tissue patterning. Initially discovered in Drosophila in 1992, Hh family members have been discovered in animals with body plans as diverse as those of mammals, insects and echinoderms. In humans three related Hh genes have been identified: Sonic, Indian and Desert hedgehog (Shh, Ihh and Dhh). Transduction of the Hh signal to the cytoplasm utilizes an unusual mechanism involving consecutive repressive interactions between Hh and its receptor components, Patched (Ptc) and Smoothened (Smo). Several cytoplasmic proteins involved in Hh signal transduction are known in Drosophila, but mammalian homologs are known only for the Cubitus interruptus (Ci) transcription factor (GLI(1-3)) and for the Ci/GLI-associated protein, Suppressor of Fused (Su(fu)). In this study I analyzed the mechanisms of how the Hh receptor Ptc regulates the signal transducer Smo, and how Smo relays the Shh signal from the cell surface to the cytoplasm ultimately leading to the activation of GLI transcription factors. In Drosophila, the kinesin-like protein Costal2 (Cos2) is required for suppression of Hh target gene expression in the absence of ligand, and loss of Cos2 causes embryonic lethality. Cos2 acts by bridging Smo to the Ci. Another protein, Su(Fu) exerts a weak suppressive influence on Ci activity and loss of Su(Fu) causes subtle changes in Drosophila wing pattern. This study revealed that domains in Smo that are critical for Cos2 binding in Drosophila are dispensable for mammalian Smo function. Furthermore, by analyzing the function of Su(Fu) and the closest mouse homologs of Cos2 by protein overexpression and RNA interference I found that inhibition of the Hh response pathway in the absence of ligand does not require Cos2 activity, but instead critically depends on the activity of Su(Fu). These results indicate that a major change in the mechanism of action of a conserved signaling pathway occurred during evolution, probably through phenotypic drift made possible by the existence in some species of two parallel pathways acting between the Hh receptor and the Ci/GLI transcription factors. In a second approach to unravel Hh signaling we cloned > 90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase-activity deficient mutants. Using this kinome resource as a screening tool, two kinases, MAP3K10 and DYRK2 were found to regulate Shh signaling. DYRK2 directly phosphorylated and induced the proteasome dependent degradation of the key Hh-pathway regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2.
Resumo:
Colorectal cancer (CRC) is one of the most frequent malignancies in Western countries. Inherited factors have been suggested to be involved in 35% of CRCs. The hereditary CRC syndromes explain only ~6% of all CRCs, indicating that a large proportion of the inherited susceptibility is still unexplained. Much of the remaining genetic predisposition for CRC is probably due to undiscovered low-penetrance variations. This study was conducted to identify germline and somatic changes that contribute to CRC predisposition and tumorigenesis. MLH1 and MSH2, that underlie Hereditary non-polyposis colorectal cancer (HNPCC) are considered to be tumor suppressor genes; the first hit is inherited in the germline and somatic inactivation of the wild type allele is required for tumor initiation. In a recent study, frequent loss of the mutant allele in HNPCC tumors was detected and a new model, arguing against the two-hit hypothesis, was proposed for somatic HNPCC tumorigenesis. We tested this hypothesis by conducting LOH analysis on 25 colorectal HNPCC tumors with a known germline mutation in the MLH1 or MSH2 genes. LOH was detected in 56% of the tumors. All the losses targeted the wild type allele supporting the classical two-hit model for HNPCC tumorigenesis. The variants 3020insC, R702W and G908R in NOD2 predispose to Crohn s disease. Contribution of NOD2 to CRC predisposition has been examined in several case-control series, with conflicting results. We have previously shown that 3020insC does not predispose to CRC in Finnish CRC patients. To expand our previous study the variants R702W and G908R were genotyped in a population-based series of 1042 Finnish CRC patients and 508 healthy controls. Association analyses did not show significant evidence for association of the variants with CRC. Single nucleotide polymorphism (SNP) rs6983267 at chromosome 8q24 was the first CRC susceptibility variant identified through genome-wide association studies. To characterize the role of rs6983267 in CRC predisposition in the Finnish population, we genotyped the SNP in the case-control material of 1042 cases and 1012 controls and showed that G allele of rs6983267 is associated with the increased risk of CRC (OR 1.22; P=0.0018). Examination of allelic imbalance in the tumors heterozygous for rs6983267 revealed that copy number increase affected 22% of the tumors and interestingly, it favored the G allele. By utilizing a computer algorithm, Enhancer Element Locator (EEL), an evolutionary conserved regulatory motif containing rs6983267 was identified. The SNP affected the binding site of TCF4, a transcription factor that mediates Wnt signaling in cells, and has proven to be crucial in colorectal neoplasia. The preferential binding of TCF4 to the risk allele G was showed in vitro and in vivo. The element drove lacZ marker gene expression in mouse embryos in a pattern that is consistent with genes regulated by the Wnt signaling pathway. These results suggest that rs6983267 at 8q24 exerts its effect in CRC predisposition by regulating gene expression. The most obvious target gene for the enhancer element is MYC, residing ~335 kb downstream, however further studies are required to establish the transcriptional target(s) of the predicted enhancer element.
Resumo:
Stanniocalcin-1 (STC-1) is a 56 kD homodimeric protein which was originally identified in bony fish, where it regulates calcium/phosphate homeostasis and protects against toxic hypercalcemia. STC-1 was considered unique to fish until the cloning of cDNA for human STC-1 in 1995 and mouse Stc-1 in 1996. STC-1 is conserved through evolution with human and salmon STC-1 sharing 60% identity and 80% similarity. The surprisingly high homology between mammalian and fish STC-1 and the protective actions of STC-1 in terminally differentiated neurons, originally reported by my colleagues, prompted me to further study the role of STC-1 in cell stress and differentiation. One purpose was to determine whether there is an inter-relationship between terminally differentiated cells and STC-1 expression. The study revealed an accumulation of STC-1 in mature megakaryocytes and adipocytes, i.e. postmitotic cells with limited or lost proliferative capacity. Still proliferating uninduced cells were negative for STC-1 mRNA and protein, whereas differentiating cells accumulated STC-1 in their cytoplasm. Interestingly, in liposarcomas the grade inversely correlated with STC-1 expression. Another aim was to study how STC-1 gene expression is regulated. Given that IL-6 is a cytokine with neuroprotective actions, by unknown mechanisms, we examined whether IL-6 regulates STC-1 gene expression. Treatment of human neural Paju cells with IL-6 induced a dose-dependent upregulation of STC-1 mRNA levels. This induction of STC-1 expression by IL-6 occurred mainly through the MAPK signaling pathway. Furthermore, I studied the role of IL-6-mediated STC-1 expression as a mechanism of cytoprotection conferred by hypoxic preconditioning (HOPC) in brain and heart. My findings show that Stc-1 was upregulated in brain after hypoxia treatment. In the brain of IL-6 deficient mice, however, no upregulation of Stc-1 expression was evident. After induced brain injury the STC-1 response in brains of IL-6 transgenic mice, with IL-6 overexpression in astroglial cells, was stronger than in brains of WT mice. These results indicate that IL-6-mediated expression of STC-1 is one molecular mechanism of HOPC-induced tolerance to brain ischemia. The protection conferred by HOPC in heart occurs during a bimodal time course comprising early and delayed preconditioning. Interestingly, my results showed that the expression of Stc-1 in heart was upregulated in a biphasic manner during HOPC. IL-6 deficient mice did not, however, show a similar biphasic manner of Stc-1 upregulation as did WT mice. Instead, only an early upregulation of Stc-1 expression was evident. The results suggest that the upregulation of Stc-1 during the delayed preconditioning is IL-6-dependent. The upregulated expression of Stc-1 during the early preconditioning, however, is only partly IL-6-dependent and possibly also directly mediated by HIF-1. These findings suggest that STC-1 is a pro-survival protein for terminally differentiated cells and that STC-1 expression may in fact be regulated by stress. In addition, I show that STC-1 gene upregulation, mediated in part by IL-6, is a new mechanism of protection conferred by HOPC in brain and heart. Because of its importance for fundamental biological processes, such as differentiation and cytoprotection, STC-1 may have therapeutic implications for management of stroke, neurodegenerative diseases, cancer, and obesity.
Resumo:
Forkhead box class O (FoxO) transcription factors are members of the forkhead box transcription factor superfamily, with orthologues in various species such as human, worm and fly. FoxO proteins are key regulators of growth, metabolism, stress resistance and, consequently, life span. FoxOs integrate signals from different pathways, e.g. the growth controlling Insulin-TOR signaling pathway and the stress induced JNK and Hippo signaling pathways. FoxO proteins have evolved to guide the cellular response to varying energy and stress conditions by inducing the expression of genes involved in the regulation of growth and metabolism. This work has aimed to deepen the understanding of how FoxO executes its biological functions. A particular emphasis has been laid to its role in growth control. Specifically, evidence is presented indicating that FoxO restricts tissue growth in a situation when TOR signaling is high. This finding can have implications in a human condition called Tuberous sclerosis, manifested by multiple benign tumors. Further, it is shown that FoxO directly binds to the promoter and regulates the expression of a Drosophila Adenylate cyclase gene, ac76e, which in turn modulates the fly s development and growth systemically. These results strengthen FoxOs position among central size regulators as it is able to operate at the level of individual cells as well as in the whole organism. Finally, an attempt to reveal the regulatory network upstream of FoxO has been carried out. Several putative FoxO activity regulators were identified in an RNAi screen of Drosophila kinases and phosphatases. The results underscore that FoxO is regulated through an elaborate network, ensuring the correct execution of key cellular processes in metabolism and response to stress. Overall, the evidence provided in this study strengthens our view of FoxO as a key integrator of growth and stress signals.
Resumo:
The neuroectodermal tissue close to the midbrain hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) regulates cellular survival, patterning and proliferation in the midbrain (Mb) and rhombomere 1 (R1) of the hindbrain. Signaling molecules of the IsO, such as fibroblast growth factor 8 (FGF8) and WNT1 are expressed in distinct bands of cells around the MHB. It has been previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. In the present study, we have compared the gene expression profiles of wild-type and Fgfr1 mutant embryos. We show that the loss of Fgfr1 results in the downregulation of several genes expressed close to the MHB and in the disappearance of gene expression gradients in the midbrain and R1. Our microarray screen identified several previously uncharacterized genes which may participate in the development of midbrain R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1. As Wnt1 expression at the MHB region requires the FGF signaling pathway, WNT target genes, including Drapc1, were also identified in our screen. The microarray data analysis also suggested that the cells next to the midbrain hindbrain boundary express distinct cell cycle regulators. We showed that the cells close to the border appeared to have unique features. These cells proliferate less rapidly than the surrounding cells. Unlike the cells further away from the boundary, these cells express Fgfr1 but not the other FGF receptors. The slowly proliferating boundary cells are necessary for development of the characteristic isthmic constriction. They may also contribute to compartmentalization of this brain region.
Resumo:
Plants are capable of recognizing phytopathogens through the perception of pathogen-derived molecules or plant cell-wall degradation products due to the activities of pathogen-secreted enzymes. Such elicitor recognition events trigger an array of inducible defense responses involving signal transduction networks and massive transcriptional re-programming. The outcome of a pathogen infection relies on the balance between different signaling pathways, which are integrated by regulatory proteins. This thesis characterized two key regulatory components: a damage control enzyme, chlorophyllase 1 (AtCHL1), and a transcription factor, WRKY70. Their roles in defense signaling were then investigated. The Erwinia-derived elicitors rapidly activated the expression of AtCLH1 and WRKY70 through different signaling pathways. The expression of the AtCHL1 gene was up-regulated by jasmonic acid (JA) but down-regulated by salicylic acid (SA), whereas WRKY70 was activated by SA and repressed by JA. In order to elucidate the functions of AtCLH1 and WRKY70 in plant defense, stable transgenic lines were produced where these genes were overexpressed or silenced. Additionally, independent knockout lines were also characterized. Bacterial and fungal pathogens were then used to assess the contribution of these genes to the Arabidopsis disease resistance. The transcriptional modulation of AtCLH1 by either the constitutive over-expression or RNAi silencing caused alterations in the chlorophyll-to-chlorophyllide ratio, supporting the claim that chlorophyllase 1 has a role in the chlorophyll degradation pathway. Silencing of this gene led to light-dependent over-accumulation of the reactive oxygen species (ROS) in response to infection by Erwinia carotovora subsp. carotovora SCC1. This was followed by an enhanced induction of SA-dependent defense genes and an increased resistance to this pathogen. Interestingly, little effect on the pathogen-induced SA accumulation at the early infection was observed, suggesting that action of ROS might potentiate SA signaling. In contrast, the pathogen-induced JA production was significantly reduced in the RNAi silenced plants. Moreover, JA signaling and resistance to Alternaria brassicicola were impaired. These observations provide support for the argument that the ROS generated in chloroplasts might have a negative impact on JA signaling. The over-expression of WRKY70 resulted in an enhanced resistance to E. carotovora subsp. carotovora SCC1, Pseudomonas syringae pv. tomato DC3000 and Erysiphe cichoracearum UCSC1, whilst an antisense suppression or an insertional inactivation of WRKY70 led to a compromised resistance to E. carotovora subsp. carotovora SCC1 and to E. cichoracearum UCSC1 but not to P. syringae pv. tomato DC3000. Gene expression analysis revealed that WRKY70 activated many known defense-related genes associated with the SAR response but suppressed a subset of the JA-responsive genes. In particular, I was able to show that both the basal and the induced expression of AtCLH1 was enhanced by the antisense silencing or the insertional inactivation of WRKY70, whereas a reduction in AtCLH1 expression was observed in the WRKY70 over-expressors following an MeJA application or an A. brassicicola infection. Moreover, the SA-induced suppression of AtCLH1 was relieved in wrky70 mutants. These results indicate that WRKY70 down-regulates AtCLH1. An epistasis analysis suggested that WRKY70 functions downstream of the NPR1 in an SA-dependent signaling pathway. When challenged with A. brassicicola, WRKY70 over-expressing plants exhibited a compromised disease resistance while wrky70 mutants had the opposite effect. These results confirmed the WRKY70-mediated inhibitory effects on JA signaling. Furthermore, the WRKY70-controlled suppression of A. brassicicola resistance was mainly through an NPR1-dependent mechanism. Taking all the data together, I suggest that the pathogen-responsive transcription factor WRKY70 is a common component in both SA- and JA-dependent pathways and plays a crucial role in the SA-mediated suppression of JA signaling.
Resumo:
The prevalence of obesity is increasing at an alarming rate in all age groups worldwide. Obesity is a serious health problem due to increased risk of morbidity and mortality. Although environmental factors play a major role in the development of obesity, the identification of rare monogenic defects in human genes have confirmed that obesity has a strong genetic component. Mutations have been identified in genes encoding proteins of the leptin-melanocortin signaling system, which has an important role in the regulation of appetite and energy balance. The present study aimed at identifying mutations and genetic variations in the melanocortin receptors 2-5 and other genes active on the same signaling pathway accounting for severe early-onset obesity in children and morbid obesity in adults. The main achievement of this thesis was the identification of melanocortin-4 receptor (MC4R) mutations in Finnish patients. Six pathogenic MC4R mutations (308delT, P299H, two S127L and two -439delGC mutations) were identified, corresponding to a prevalence of 3% in severe early-onset obesity. No obesity causing MC4R mutations were found among patients with adult-onset morbid obesity. The MC4R 308delT deletion is predicted to result in a grossly truncated nonfunctional receptor of only 107 amino acids. The C-terminal residues, which are important in MC4R cell surface targeting, are totally absent from the mutant 308delT receptor. In vitro functional studies supported a pathogenic role for the S127L mutation since agonist induced signaling of the receptor was impaired. Cell membrane localization of the S127L receptor did not differ from that of the wild-type receptor, confirming that impaired function of the S127L receptor was due to reduced signaling properties. The P299H mutation leads to intracellular retention of the receptor. The -439delGC deletion is situated at a potential nescient helix-loop-helix 2 (NHLH2) -binding site in the MC4R promoter. It was demonstrated that the transcription factor NHLH2 binds to the consensus sequence at the -439delGC site in vitro, possibly resulting in altered promoter activity. Several genetic variants were identified in the melanocortin-3 receptor (MC3R) and pro-opiomelanocortin (POMC) genes. These polymorphisms do not explain morbid obesity, but the results indicate that some of these genetic variations may be modifying factors in obesity, resulting in subtle changes in obesity-related traits. A risk haplotype for obesity was identified in the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) gene through a candidate gene single nucleotide polymorphism (SNP) genotyping approach. An ENPP1 haplotype, composed of SNPs rs1800949 and rs943003, was shown to be significantly associated with morbid obesity in adults. Accordingly, the MC3R, POMC and ENPP1 genes represent examples of susceptibility genes in which genetic variants predispose to obesity. In conclusion, pathogenic mutations in the MC4R gene were shown to account for 3% of cases with severe early-onset obesity in Finland. This is in line with results from other populations demonstrating that mutations in the MC4R gene underlie 1-6% of morbid obesity worldwide. MC4R deficiency thus represents the most common monogenic defect causing human obesity reported so far. The severity of the MC4-receptor defect appears to be associated with time of onset and the degree of obesity. Classification of MC4R mutations may provide a useful tool when predicting the outcome of the disease. In addition, several other genetic variants conferring susceptibility to obesity were detected in the MC3R, MC4R, POMC and ENPP1 genes.
Resumo:
Nuclear receptors (NRs) comprise a large family of proteins that mediate the effects of small lipophilic molecules such as steroid hormones. In addition, there are a group of NRs which lack identified natural ligands and are referred as orphan NRs. In this thesis, the function of two such orphan NR families, the NR3B (ERRα, ERRβ and ERRγ) and the NR4A family (NGFI-B, Nurr1 and Nor1), was studied. NR3B and NR4A receptors regulate many biological processes such as energy metabolism and carcinogenesis. In addition, NR3B and NR4A receptors are expressed in bone. Therefore, the signaling and function of NR3B and NR4A orphan nuclear receptors was studied specifically in osteoblasts. NR4A receptors were found to be regulated by NR3B receptors and the Wnt/β-catenin signaling pathway as ERRα, ERRγ and β-catenin repressed the transcriptional activity of NR4A receptors in U2-OS cells. NGFI-B was found to repress the transcriptional activity of ERRγ in HeLa cells. The phytoestrogen equol was identified as a new agonist for ERRγ and ERRβ in PC-3, U2-OS, and SaOS-2 cells. Equol increased the transcriptional activity of ERRγ by increasing ERRγ co-activator binding and by inducing a conformational change in the ligand binding pocket of ERRγ. The growth inhibitory effect of equol on PC-3 prostate cancer cells was decreased by blocking ERRγ expression by siRNA. Therefore, ERRγ could mediate some of the beneficial health effects of equol. The Wnt/β-catenin signaling pathway is important for the differentiation and function of osteoblasts. NR3B and NR4A receptors were found to repress the transcriptional activity mediated by β-catenin in U2-OS cells. The mesenchymal stem cells (MSCs) isolated from ERRα knockout (KO) mice showed diminished proliferation and osteoblastic differentiation compared to the wild-type cells. The overexpression of ERRα in osteoblastic MC3T3-E1 cell line increased their mineralization. Bone sialoprotein (BSP) was shown to be a direct target gene for ERRα and ERRγ as the BSP promoter was activated by ERRα or ERRγ and PGC-1α in HeLa cells. The adipogenic differentiation of ERRα KO MSCs was also decreased and they expressed less adipogenic marker genes. In conclusion, the studies described in this thesis demonstrated that the transcriptional activity of NR3B and NR4A receptors can be regulated by other orphan NRs and signaling pathways in osteoblasts. NR3B receptors can also be regulated by ligands and a new agonist, equol, was identified for ERRβ and ERRγ. New roles for NR3B and NR4A were also identified as they were shown to converge with the Wnt signaling pathway in osteoblasts, ERRγ was shown to mediate the growth inhibitory effect of equol in prostate cancer cells, and ERRα was shown to regulate positively MSC proliferation, osteoblastic differentiation and adipogenesis.
Resumo:
Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.
Resumo:
Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.
Resumo:
Normal growth and development require the precise control of gene expression. Transcription factors are proteins that regulate gene expression by binding specific sequences of DNA. Abnormalities in transcription are implicated in a variety of human diseases, including cancer, endocrine disorders and birth defects. Transcription factor GATA4 has emerged as an important regulator of normal development and function in a variety of endoderm- and mesoderm- derived tissues, including gut, heart and several endocrine organs, such as gonads. Mice harboring a null mutation of Gata4 gene die during embryogenesis due to failure in heart formation, complicating the study of functional role of GATA4 in other organs. However, the expression pattern of GATA4 suggests it may play a role in the regulation of ovarian granulosa cell development, function and apoptosis. This premise is supported by in vitro studies showing that GATA4 regulates several steroidogenic enzymes as well as auto-, para- and endocrine signaling molecules important for granulosa cell function. This study assessed the in vivo role of GATA4 for granulosa cell function by utilizing two genetically modified mouse strains. The findings in the GATA4 deficient mice included delayed puberty, impaired fertility and signs of diminished estrogen production. At the molecular level, the GATA4 deficiency leads to attenuated expression of central steroidogenic genes, Steroidogenic acute regulatory protein (StAR), Side-chain cleavage (SCC), and aromatase as a response to stimulations with exogenous gonadotropins. Taken together, these suggest GATA4 is necessary for the normal ovarian function and female fertility. Programmed cell death, apoptosis, is a crucial part of normal ovarian development and function. In addition, disturbances in apoptosis have been implicated to pathogenesis of human granulosa cell tumors (GCTs). Apoptosis is controlled by extrinsic and intrinsic pathways. The intrinsic pathway is regulated by members of Bcl-2 family, and its founding member, the anti-apoptotic Bcl-2, is known to be important for granulosa cell survival. This study showed that the expression levels of GATA4 and Bcl-2 correlate in the human GCTs and that GATA4 regulates Bcl-2 expression, presumably by directly binding to its promoter. In addition, disturbing GATA4 function was sufficient to induce apoptosis in cultured GCT- derived cell line. Taken together, these results suggest GATA4 functions as an anti-apoptotic factor in GCTs. The extrinsic apoptotic pathway is controlled by the members of tumor necrosis factor (TNF) superfamily. An interesting ligand of this family is TNF-related apoptosis-inducing ligand (TRAIL), possessing a unique ability to selectively induce apoptosis in malignant cells. This study characterized the previously unknown expression of TRAIL and its receptors in both developing and adult human ovary, as well as in malignant granulosa cell tumors. TRAIL pathway was shown to be active in GCTs suggesting it may be a useful tool in treating these malignancies. However, more studies are required to assess the function of TRAIL pathway in normal ovaries. In addition to its ability to induce apoptosis in GCTs, this study revealed that GATA4 protects these malignancies from TRAIL-induced apoptosis. GATA4 presumably exerts this effect by regulating the expression of anti-apoptotic Bcl-2. This is of particular interest as high expression of GATA4 is known to correlate to aggressive GCT behavior. Thus, GATA4 seems to protect GCTs from endogenous TRAIL by upregulating anti-apoptotic factors such as Bcl-2.