4 resultados para Shrimp fisheries
em Helda - Digital Repository of University of Helsinki
Resumo:
World marine fisheries suffer from economic and biological overfishing: too many vessels are harvesting too few fish stocks. Fisheries economics has explained the causes of overfishing and provided a theoretical background for management systems capable of solving the problem. Yet only a few examples of fisheries managed by the principles of the bioeconomic theory exist. With the aim of bridging the gap between the actual fish stock assessment models used to provide management advice and economic optimisation models, the thesis explores economically sound harvesting from national and international perspectives. Using data calibrated for the Baltic salmon and herring stocks, optimal harvesting policies are outlined using numerical methods. First, the thesis focuses on the socially optimal harvest of a single salmon stock by commercial and recreational fisheries. The results obtained using dynamic programming show that the optimal fishery configuration would be to close down three out of the five studied fisheries. The result is robust to stock size fluctuations. Compared to a base case situation, the optimal fleet structure would yield a slight decrease in the commercial catch, but a recreational catch that is nearly seven times higher. As a result, the expected economic net benefits from the fishery would increase nearly 60%, and the expected number of juvenile salmon (smolt) would increase by 30%. Second, the thesis explores the management of multiple salmon stocks in an international framework. Non-cooperative and cooperative game theory are used to demonstrate different "what if" scenarios. The results of the four player game suggest that, despite the commonly agreed fishing quota, the behaviour of the countries has been closer to non-cooperation than cooperation. Cooperation would more than double the net benefits from the fishery compared to a past fisheries policy. Side payments, however, are a prerequisite for a cooperative solution. Third, the thesis applies coalitional games in the partition function form to study whether the cooperative solution would be stable despite the potential presence of positive externalities. The results show that the cooperation of two out of four studied countries can be stable. Compared to a past fisheries policy, a stable coalition structure would provide substantial economic benefits. Nevertheless, the status of the salmon stocks would not improve significantly. Fourth, the thesis studies the prerequisites for and potential consequences of the implementation of an individual transferable quota (ITQ) system in the Finnish herring fishery. Simulation results suggest that ITQs would result in a decrease in the number of fishing vessels, but enables positive profits to overlap with a higher stock size. The empirical findings of the thesis affirm that the profitability of the studied fisheries could be improved. The evidence, however, indicates that incentives for free riding exist, and thus the most preferable outcome both in economic and biological terms is elusive.
Resumo:
In this thesis the use of the Bayesian approach to statistical inference in fisheries stock assessment is studied. The work was conducted in collaboration of the Finnish Game and Fisheries Research Institute by using the problem of monitoring and prediction of the juvenile salmon population in the River Tornionjoki as an example application. The River Tornionjoki is the largest salmon river flowing into the Baltic Sea. This thesis tackles the issues of model formulation and model checking as well as computational problems related to Bayesian modelling in the context of fisheries stock assessment. Each article of the thesis provides a novel method either for extracting information from data obtained via a particular type of sampling system or for integrating the information about the fish stock from multiple sources in terms of a population dynamics model. Mark-recapture and removal sampling schemes and a random catch sampling method are covered for the estimation of the population size. In addition, a method for estimating the stock composition of a salmon catch based on DNA samples is also presented. For most of the articles, Markov chain Monte Carlo (MCMC) simulation has been used as a tool to approximate the posterior distribution. Problems arising from the sampling method are also briefly discussed and potential solutions for these problems are proposed. Special emphasis in the discussion is given to the philosophical foundation of the Bayesian approach in the context of fisheries stock assessment. It is argued that the role of subjective prior knowledge needed in practically all parts of a Bayesian model should be recognized and consequently fully utilised in the process of model formulation.
Resumo:
The Baltic Sea is a geologically young, large brackish water basin, and few of the species living there have fully adapted to its special conditions. Many of the species live on the edge of their distribution range in terms of one or more environmental variables such as salinity or temperature. Environmental fluctuations are know to cause fluctuations in populations abundance, and this effect is especially strong near the edges of the distribution range, where even small changes in an environmental variable can be critical to the success of a species. This thesis examines which environmental factors are the most important in relation to the success of various commercially exploited fish species in the northern Baltic Sea. It also examines the uncertainties related to fish stocks current and potential status as well as to their relationship with their environment. The aim is to quantify the uncertainties related to fisheries and environmental management, to find potential management strategies that can be used to reduce uncertainty in management results and to develop methodology related to uncertainty estimation in natural resources management. Bayesian statistical methods are utilized due to their ability to treat uncertainty explicitly in all parts of the statistical model. The results show that uncertainty about important parameters of even the most intensively studied fish species such as salmon (Salmo salar L.) and Baltic herring (Clupea harengus membras L.) is large. On the other hand, management approaches that reduce uncertainty can be found. These include utilising information about ecological similarity of fish stocks and species, and using management variables that are directly related to stock parameters that can be measured easily and without extrapolations or assumptions.