13 resultados para Shock wave solution
em Helda - Digital Repository of University of Helsinki
Resumo:
Aim of this study is to investigate composition of the crust in Finland using seismic wide-angle velocity models and laboratory measurements on P- and S-wave velocities of different rock types. The velocities adopted from wide-angle velocity models were compared with laboratory velocities of different rock types corrected for the crustal PT conditions in the study area. The wide-angle velocity models indicate that the P-wave velocity does not only increase step-wise at boundaries of major crustal layers, but there is also gradual increase of velocity within the layers. On the other hand, the laboratory measurements of velocities indicate that no single rock type is able to provide the gradual downward increasing trends. Thus, there must be gradual vertical changes in rock composition. The downward increase of velocities indicates that the composition of the crust becomes gradually more mafic with increasing depth. Even though single rock types cannot simulate the wide-angle model velocities, it can be done with a mixture of rock types. There are a large number of rock type mixtures giving the correct P-wave velocities. Therefore, the inverse solution of rock types and their proportions from velocities is a non-unique problem if only P-wave velocities is available. Amount of the possible rock type mixtures can be limitted using S-wave velocities, reflection seismic results and other geological and geophysical results of the study area. Crustal model FINMIX-2 is presented in this study and it suggest that the crustal velocity profiles can be simulated with rock type mixtures, where the upper crust consists of felsic gneisses and granitic-granodioritic rocks with a minor contribution of quartzite, amphibolite and diabase. In the middle crust the amphibolite proportion increases. The lower crust consists of tonalitic gneiss, mafic garnet granulite, hornblendite, pyroxenite and minor mafic eclogite. This composition model is in agreement with deep crustal kimberlite-hosted xenolith data in eastern Finland and reflectivity of the FIRE (Finnish Reflection Experiment). According to FINMIX-2 model the Moho is deeper and the crustal composition is a more mafic than an average global continental model would suggest. Composition models of southern Finland are quite similar than FINMIX-2 model. However, there are minor differencies between the models, which indicates areal differences of composition. Models of northern Finland shows that the crustal thickness is smaller than southern Finland and composition of the upper crust is different. Density profiles calculated from the lithological models suggest that there is practically no density contrast at Moho in areas of the high-velocity lower crust. This implies that crustal thickness in the central Fennoscandian Shield may have been controlled by the densities of the lower crustal and upper mantle rocks.
Resumo:
NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.
Resumo:
The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.
Resumo:
Septic shock is a common killer in intensive care units (ICU). The most crucial issue concerning the outcome is the early and aggressive start of treatment aimed at normalization of hemodynamics and the early start of antibiotics during the very first hours. The optimal targets of hemodynamic treatment, or impact of hemodynamic treatment on survival after first resuscitation period are less known. The objective of this study was to evaluate different aspects of the hemodynamic pattern in septic shock with special attention to prediction of outcome. In particular components of early treatment and monitoring in the ICU were assessed. A total of 401 patients, 218 with septic shock and 192 with severe sepsis or septic shock were included in the study. The patients were treated in 24 Finnish ICUs during 1999-2005. 295 of the patients were included in the Finnish national epidemiologic Finnsepsis study. We found that the most important hemodynamic variables concerning the outcome were the mean arterial pressures (MAP) and lactate during the first six hours in ICU and the MAP and mixed venous oxygen saturation (SvO2) under 70% during first 48 hours. The MAP levels under 65 mmHg and SvO2 below 70% were the best predictive thresholds. Also the high central venous pressure (CVP) correlated to adverse outcome. We assessed the correlation and agreement of SvO2 and mean central venous oxygen saturation (ScvO2) in septic shock during first day in ICU. The mean SvO2 was below ScvO2 during early sepsis. Bias of difference was 4.2% (95% limits of agreement 8.1% to 16.5%) by Bland-Altman analysis. The difference between saturation values correlated significantly to cardiac index and oxygen delivery. Thus, the ScvO2 can not be used as a substitute of SvO2 in hemodynamic monitoring in ICU. Several biomarkers have been investigated for their ability to help in diagnosis or outcome prediction in sepsis. We assessed the predictive value of N-terminal pro brain natriuretic peptide (NT-proBNP) on mortality in severe sepsis or septic shock. The NT-proBNP levels were significantly higher in hospital nonsurvivors. The NT-proBNP 72 hrs after inclusion was independent predictor of hospital mortality. The acute cardiac load contributed to NTproBNP values at admission, but renal failure was the main confounding factor later. The accuracy of NT-proBNP, however, was not sufficient for clinical decision-making concerning the outcome prediction. The delays in start of treatment are associated to poorer prognosis in sepsis. We assessed how the early treatment guidelines were adopted, and what was the impact of early treatment on mortality in septic shock in Finland. We found that the early treatment was not optimal in Finnish hospitals and this reflected to mortality. A delayed initiation of antimicrobial agents was especially associated with unfavorable outcome.
Resumo:
In this thesis acceleration of energetic particles at collisionless shock waves in space plasmas is studied using numerical simulations, with an emphasis on physical conditions applicable to the solar corona. The thesis consists of four research articles and an introductory part that summarises the main findings reached in the articles and discusses them with respect to theory of diffusive shock acceleration and observations. This thesis gives a brief review of observational properties of solar energetic particles and discusses a few open questions that are currently under active research. For example, in a few large gradual solar energetic particle events the heavy ion abundance ratios and average charge states show characteristics at high energies that are typically associated with flare-accelerated particles, i.e. impulsive events. The role of flare-accelerated particles in these and other gradual events has been discussed a lot in the scientific community, and it has been questioned if and how the observed features can be explained in terms of diffusive shock acceleration at shock waves driven by coronal mass ejections. The most extreme solar energetic particle events are the so-called ground level enhancements where particle receive so high energies that they can penetrate all the way through Earth's atmosphere and increase radiation levels at the surface. It is not known what conditions are required for acceleration into GeV/nuc energies, and the presence of both very fast coronal mass ejections and X-class solar flares makes it difficult to determine what is the role of these two accelerators in ground level enhancements. The theory of diffusive shock acceleration is reviewed and its predictions discussed with respect to the observed particle characteristics. We discuss how shock waves can be modeled and describe in detail the numerical model developed by the author. The main part of this thesis consists of the four scientific articles that are based on results of the numerical shock acceleration model developed by the author. The novel feature of this model is that it can handle complex magnetic geometries which are found, for example, near active regions in the solar corona. We show that, according to our simulations, diffusive shock acceleration can explain the observed variations in abundance ratios and average charge states, provided that suitable seed particles and magnetic geometry are available for the acceleration process in the solar corona. We also derive an injection threshold for diffusive shock acceleration that agrees with our simulation results very well, and which is valid under weakly turbulent conditions. Finally, we show that diffusive shock acceleration can produce GeV/nuc energies under suitable coronal conditions, which include the presence of energetic seed particles, a favourable magnetic geometry, and an enhanced level of ambient turbulence.
Resumo:
The aim of this thesis was to study the seismic tomography structure of the earth s crust together with earthquake distribution and mechanism beneath the central Fennoscandian Shield, mainly in southern and central Finland. The earthquake foci and some fault plane solutions are correlated with 3-D images of the velocity tomography. The results are discussed in relation to the stress field of the Shield and with other geophysical, e.g. geomagnetic, gravimetric, tectonic, and anisotropy studies of the Shield. The earthquake data of the Fennoscandian Shield has been extracted from the Nordic earthquake parameter data base which was founded at the time of inception of the earthquake catalogue for northern Europe. Eight earlier earthquake source mechanisms are included in a pilot study on creating a novel technique for calculating an earthquake fault plane solution. Altogether, eleven source mechanisms of shallow, weak earthquakes are related in the 3-D tomography model to trace stresses of the crust in southern and central Finland. The earthquakes in the eastern part of the Fennoscandian Shield represent low-active, intraplate seismicity. Earthquake mechanisms with NW-SE oriented horizontal compression confirm that the dominant stress field originates from the ridge-push force in the North Atlantic Ocean. Earthquakes accumulate in coastal areas, in intersections of tectonic lineaments, in main fault zones or are bordered by fault lines. The majority of Fennoscandian earthquakes concentrate on the south-western Shield in southern Norway and Sweden. Onwards, epicentres spread via the ridge of the Shield along the west-coast of the Gulf of Bothnia northwards along the Tornio River - Finnmark fault system to the Barents Sea, and branch out north-eastwards via the Kuusamo region to the White Sea Kola Peninsula faults. The local seismic tomographic method was applied to find the terrane distribution within the central parts of the Shield the Svecofennian Orogen. From 300 local explosions a total of 19765 crustal Pg- and Sg-wave arrival times were inverted to create independent 3-D Vp and Vs tomographic models, from which the Vp/Vs ratio was calculated. The 3-D structure of the crust is presented as a P-wave and for the first time as an S-wave velocity model, and also as a Vp/Vs-ratio model of the SVEKALAPKO area that covers 700x800 km2 in southern and central Finland. Also, some P-wave Moho-reflection data was interpolated to image the relief of the crust-mantle boundary (i.e. Moho). In the tomography model, the seismic velocities vary smoothly. The lateral variations are larger for Vp (dVp =0.7 km/s) than for Vs (dVs =0.4 km/s). The Vp/Vs ratio varies spatially more distinctly than P- and S-wave velocities, usually from 1.70 to 1.74 in the upper crust and from 1.72 to 1.78 in the lower crust. Schist belts and their continuations at depth are associated with lower velocities and lower Vp/Vs ratios than in the granitoid areas. The tomography modelling suggests that the Svecofennian Orogen was accreted from crustal blocks ranging in size from 100x100 km2 to 200x200 km2 in cross-sectional area. The intervening sedimentary belts have ca. 0.2 km/s lower P- and S-wave velocities and ca. 0.04 lower Vp/Vs ratios. Thus, the tomographic model supports the concept that the thick Svecofennian crust was accreted from several crustal terranes, some hidden, and that the crust was later modified by intra- and underplating. In conclusion, as a novel approach the earthquake focal mechanism and focal depth distribution is discussed in relation to the 3-D tomography model. The schist belts and the transformation zones between the high- and low-velocity anomaly blocks are characterized by deeper earthquakes than the granitoid areas where shallow events dominate. Although only a few focal mechanisms were solved for southern Finland, there is a trend towards strike-slip and oblique strike-slip movements inside schist areas. The normal dip-slip type earthquakes are typical in the seismically active Kuusamo district in the NE edge of the SVEKALAPKO area, where the Archean crust is ca. 15-20 km thinner than the Proterozoic Svecofennian crust. Two near vertical dip-slip mechanism earthquakes occurred in the NE-SW junction between the Central Finland Granitoid Complex and the Vyborg rapakivi batholith, where high Vp/Vs-ratio deep-set intrusion splits the southern Finland schist belt into two parts in the tomography model.
Resumo:
Hong Kong was once a British colony and has been under the sovereignty of People’s Republic of China (PRC) since 1997. However, some of the unjust practices and colonial legacies are infiltrated into the development ideology as well as the social structures. The construction of intercity express railway project announced in 2008 causing the demolishment of Tsoi Yuen Tsuen, a “non-indigenous” agricultural village in Hong Kong, was one of the current examples. Tsoi Yuen village was established under the former colonial sovereignty sixty years ago. Approximately 450 populations were affected that they had to relocate their homeland involuntarily. However, these villagers were very attached to their homelands and were unwilling to move, and meanwhile they found that they were absent in the government’s consultation and decision-making process. Soon they began their resistance and demanded for “No Move! No Demolish!”. Their movement was strongly supported by a group of “Post-80s generation” and turned into the most important social movement of the city in recent years. In fact, demolition of Tsoi Yuen Village for city development is not an isolated case in the city. Meanwhile the situation is getting worse in Mainland China. I chose the case study of Tsoi Yuen Resistance from 2008 to 2011 for revelation of the complicated colonial history and postcolonial era of Hong Kong. I focused on discussing the Tsoi Yuen Resistance and the Post-80s movement, and how they have exposed the tension between top-down urban planning and development and public movements fighting for a more democratic process in choosing their way of living. Through the study of a village movement which as well as the rationale behind the Post-80s’ support, I hoped to illustrate how this movement has awaken a different sense of living for the new generations in the midst of the high-sounding urban development. It is an opportunity to examine Hong Kong’s colonial epoch in a different perspective: through studying the Tsoi Yuen Village, let them (subalterns) speak for themselves. Furthermore, the significance of this resistance, taking place eleven years after the handover to the PRC, is an important fact that I shall not miss in later discussion. Last but not least, during the resistance, advanced technology and social networks such as Facebook, Twitter, iPhone were used by Post 80s generation to spread the latest information in order to attract public’s concern and participation. Therefore, apart from studying Tsoi Yuen Resistance as a local social movement, I also regard it as a part of the global movement in perusing ecological lifestyle and civil society. How Post 80s’ generation manipulates the global idea in a local context will also be examined.