23 resultados para Sequential Gaussian simulation

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an empirical study of how two words in Icelandic, "nú" and "núna", are used in contemporary Icelandic conversation. My aims in this study are, first, to explain the differences between the temporal functions of "nú" and "núna", and, second, to describe the non-temporal functions of "nú". In the analysis, a focus is placed on comparing the sequential placement of the two words, on their syntactical distribution, and on their prosodic realization. The empirical data comprise 14 hours and 11 minutes of naturally occurring conversation recorded between 1996 and 2003. The selected conversations represent a wide range of interactional contexts including informal dinner parties, institutional and non-institutional telephone conversations, radio programs for teenagers, phone-in programs, and, finally, a political debate on television. The theoretical and methodological framework is interactional linguistics, which can be described as linguistically oriented conversation analysis (CA). A comparison of "nú" and "núna" shows that the two words have different syntactic distributions. "Nú" has a clear tendency to occur in the front field, before the finite verb, while "núna" typically occurs in the end field, after the object. It is argued that this syntactic difference reflects a functional difference between "nú" and "núna". A sequential analysis of "núna" shows that the word refers to an unspecified period of time which includes the utterance time as well as some time in the past and in the future. This temporal relation is referred to as reference time. "Nú", by contrast, is mainly used in three different environments: a) in temporal comparisons, 2) in transitions, and 3) when the speaker is taking an affective stance. The non-temporal functions of "nú" are divided into three categories: a) "nú" as a tone particle, 2) "nú" as an utterance particle, and 3) "nú" as a dialogue particle. "Nú" as a tone particle is syntactically integrated and can occur in two syntactic positions: pre-verbally and post-verbally. I argue that these instances are employed in utterances in which a speaker is foregrounding information or marking it as particularly important. The study shows that, although these instances are typically prosodically non-prominent and unstressed, they are in some cases delivered with stress and with a higher pitch than the surrounding talk. "Nú" as an utterance particle occurs turn-initially and is syntactically non-integrated. By using "nú", speakers show continuity between turns and link new turns to prior ones. These instances initiate either continuations by the same speaker or new turns after speaker shifts. "Nú" as a dialogue particle occurs as a turn of its own. The study shows that these instances register informings in prior turns as unexpected or as a departure from the normal state of affairs. "Nú" as a dialogue particle is often delivered with a prolonged vowel and a recognizable intonation contour. A comparative sequential and prosodic analysis shows that in these cases there is a correlation between the function of "nú" and the intonation contour by which it is delivered. Finally, I argue that despite the many functions of "nú", all the instances can be said to have a common denominator, which is to display attention towards the present moment and the utterances which are produced prior or after the production of "nú". Instead of anchoring the utterances in external time or reference time, these instances position the utterance in discourse internal time, or discourse time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest management is facing new challenges under climate change. By adjusting thinning regimes, conventional forest management can be adapted to various objectives of utilization of forest resources, such as wood quality, forest bioenergy, and carbon sequestration. This thesis aims to develop and apply a simulation-optimization system as a tool for an interdisciplinary understanding of the interactions between wood science, forest ecology, and forest economics. In this thesis, the OptiFor software was developed for forest resources management. The OptiFor simulation-optimization system integrated the process-based growth model PipeQual, wood quality models, biomass production and carbon emission models, as well as energy wood and commercial logging models into a single optimization model. Osyczka s direct and random search algorithm was employed to identify optimal values for a set of decision variables. The numerical studies in this thesis broadened our current knowledge and understanding of the relationships between wood science, forest ecology, and forest economics. The results for timber production show that optimal thinning regimes depend on site quality and initial stand characteristics. Taking wood properties into account, our results show that increasing the intensity of thinning resulted in lower wood density and shorter fibers. The addition of nutrients accelerated volume growth, but lowered wood quality for Norway spruce. Integrating energy wood harvesting into conventional forest management showed that conventional forest management without energy wood harvesting was still superior in sparse stands of Scots pine. Energy wood from pre-commercial thinning turned out to be optimal for dense stands. When carbon balance is taken into account, our results show that changing carbon assessment methods leads to very different optimal thinning regimes and average carbon stocks. Raising the carbon price resulted in longer rotations and a higher mean annual increment, as well as a significantly higher average carbon stock over the rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study integral representations of Gaussian processes with a pre-specified law in terms of other Gaussian processes. The dissertation consists of an introduction and of four research articles. In the introduction, we provide an overview about Volterra Gaussian processes in general, and fractional Brownian motion in particular. In the first article, we derive a finite interval integral transformation, which changes fractional Brownian motion with a given Hurst index into fractional Brownian motion with an other Hurst index. Based on this transformation, we construct a prelimit which formally converges to an analogous, infinite interval integral transformation. In the second article, we prove this convergence rigorously and show that the infinite interval transformation is a direct consequence of the finite interval transformation. In the third article, we consider general Volterra Gaussian processes. We derive measure-preserving transformations of these processes and their inherently related bridges. Also, as a related result, we obtain a Fourier-Laguerre series expansion for the first Wiener chaos of a Gaussian martingale. In the fourth article, we derive a class of ergodic transformations of self-similar Volterra Gaussian processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmentation is a data mining technique yielding simplified representations of sequences of ordered points. A sequence is divided into some number of homogeneous blocks, and all points within a segment are described by a single value. The focus in this thesis is on piecewise-constant segments, where the most likely description for each segment and the most likely segmentation into some number of blocks can be computed efficiently. Representing sequences as segmentations is useful in, e.g., storage and indexing tasks in sequence databases, and segmentation can be used as a tool in learning about the structure of a given sequence. The discussion in this thesis begins with basic questions related to segmentation analysis, such as choosing the number of segments, and evaluating the obtained segmentations. Standard model selection techniques are shown to perform well for the sequence segmentation task. Segmentation evaluation is proposed with respect to a known segmentation structure. Applying segmentation on certain features of a sequence is shown to yield segmentations that are significantly close to the known underlying structure. Two extensions to the basic segmentation framework are introduced: unimodal segmentation and basis segmentation. The former is concerned with segmentations where the segment descriptions first increase and then decrease, and the latter with the interplay between different dimensions and segments in the sequence. These problems are formally defined and algorithms for solving them are provided and analyzed. Practical applications for segmentation techniques include time series and data stream analysis, text analysis, and biological sequence analysis. In this thesis segmentation applications are demonstrated in analyzing genomic sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of four research papers and an introduction providing some background. The structure in the universe is generally considered to originate from quantum fluctuations in the very early universe. The standard lore of cosmology states that the primordial perturbations are almost scale-invariant, adiabatic, and Gaussian. A snapshot of the structure from the time when the universe became transparent can be seen in the cosmic microwave background (CMB). For a long time mainly the power spectrum of the CMB temperature fluctuations has been used to obtain observational constraints, especially on deviations from scale-invariance and pure adiabacity. Non-Gaussian perturbations provide a novel and very promising way to test theoretical predictions. They probe beyond the power spectrum, or two point correlator, since non-Gaussianity involves higher order statistics. The thesis concentrates on the non-Gaussian perturbations arising in several situations involving two scalar fields, namely, hybrid inflation and various forms of preheating. First we go through some basic concepts -- such as the cosmological inflation, reheating and preheating, and the role of scalar fields during inflation -- which are necessary for the understanding of the research papers. We also review the standard linear cosmological perturbation theory. The second order perturbation theory formalism for two scalar fields is developed. We explain what is meant by non-Gaussian perturbations, and discuss some difficulties in parametrisation and observation. In particular, we concentrate on the nonlinearity parameter. The prospects of observing non-Gaussianity are briefly discussed. We apply the formalism and calculate the evolution of the second order curvature perturbation during hybrid inflation. We estimate the amount of non-Gaussianity in the model and find that there is a possibility for an observational effect. The non-Gaussianity arising in preheating is also studied. We find that the level produced by the simplest model of instant preheating is insignificant, whereas standard preheating with parametric resonance as well as tachyonic preheating are prone to easily saturate and even exceed the observational limits. We also mention other approaches to the study of primordial non-Gaussianities, which differ from the perturbation theory method chosen in the thesis work.