3 resultados para Scilla sinensis subsp. sinensis

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural products constitute an important source of new drugs. The bioavailability of the drugs depends on their absorption, distribution, metabolism and elimination. To achieve good bioavailability, the drug must be soluble in water, stable in the gastrointestinal tract and palatable. Binding proteins may improve the solubility of drug compounds, masking unwanted properties, such as bad taste, bitterness or toxicity, transporting or protecting these compounds during processing and storage. The focus of this thesis was to study the interactions, including ligand binding and the effect of pH and temperature, of bovine and reindeer β-lactoglobulin (βLG) with such compounds as retinoids, phenolic compounds as well as with compounds from plant extracts, and to investigate the transport properties of the βLG-ligand complex. To examine the binding interactions of different ligands to βLG, new methods were developed. The fluorescence binding method for the evaluation of ligand binding to βLG was miniaturized from a quartz cell to a 96-well plate. A method of ultrafiltration sampling combined with high-performance liquid chromatography was developed to assess the binding of compounds from extracts. The interactions of phenolic compounds or retinoids and βLG were investigated using the 96-well plate method. The majority of flavones, flavonols, flavanones and isoflavones and all of the retinoids included were shown to bind to bovine and reindeer βLG. Phenolic compounds, contrary to retinol, were not released at acidic pH. Those results suggest that βLG may have more binding sites, probably also on the surface of βLG. An extract from Camellia sinensis (L.) O. Kunze (black tea), Urtica dioica L. (nettle) and Piper nigrum (black pepper) were used to evaluate whether βLG could bind compounds from plant extracts. Piperine from P. nigrum was found to bind tightly and rutin from U. dioica weakly to βLG. No components from C. sinensis bound to βLG in our experiment. The uptake and membrane permeation of bovine and reindeer βLG, free and bound with retinol, palmitic acid and cholesterol, were investigated using Caco-2 cell monolayers. Both bovine and reindeer βLG were able to cross the Caco-2 cell membrane. Free and βLG-bound retinol and palmitic acid were transported equally, whereas cholesterol could not cross the Caco-2 cell monolayer free or bound to βLG. Our results showed that βLG can bind different natural product compounds, but cannot enhance transport of retinol, palmitic acid or cholesterol through Caco-2 cells. Despite this, βLG, as a water-soluble binding protein, may improve the solubility of natural compounds, possibly protecting them from early degradation and transporting some of them through the stomach. Furthermore, it may decrease their bad or bitter taste during oral administration of drugs or in food preparations. βLG can also enhance or decrease the health benefits of herbal teas and food preparations by binding compounds from extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yogurt consumption has been related to longevity of some populations living on the Balkans. Yogurt starter L. delbrueckii subsp. bulgaricus and Str. thermophilus have been recognized as probiotics with verified beneficial health effects. The oral cavity emerges as a arget for probiotic applications. Probiotics have demonstrated promising results in controlling dental diseases and oral yeast infections. However, L. bulgaricus despite its broad availability in dairy products has not been evaluated for probiotic activity in the mouth. These series of studies investigated in vitro properties of L. bulgaricus to outline its potential as an oral probiotic. Prerequisite probiotic properties in the mouth are resistance to oral defense mechanisms, adherence to saliva-coated surfaces, and inhibition of oral pathogens. L. bulgaricus strains showed a strain-dependent inhibition of oral streptococci and Aggregatibacter actinomycetemcomitans, whereas none of the dairy starter strains could affect growth of Porphyromonas gingivalis and Fusobacterium nucleatum. Adhesion is a factor contributing to colonization of the species at the target site. Radiolabeled L. bulgaricus strains and L. rhamnosus GG were tested for their ability to adhere to saliva-coated surfaces. The effects of lysozyme on adhesion and adhesion of Streptococcus sanguinis after lactobacilli pretreatment were also assessed. Adhesion of L. bulgaricus remained lower in comparison to L. rhamnosus GG. One L. bulgaricus strain showed binding frequency comparable to S. sanguinis. Lysozyme pretreatment significantly increased Lactobacillus adhesion. Low gelatinolytic activity was observed for all strains and no conversion of proMMP-9 to its active form was induced by L. bulgaricus. Safety assessment ruled out deleterious effects of L. bulgaricus on extracellular matrix structures. Cytokine response of oral epithelial cells was assessed by measuring IL-8 and TNF-α in cell culture supernatants. The effect of P. gingivalis on cytokine secretion after lactobacilli pretreatment was also assessed. A strain- and time-dependent induction of IL-8 was observed with live bacteria inducing the highest levels of cytokine secretion. Levels of TNF-α were low and only one of ten L. bulgaricus strains stimulated TNF-α secretion similar to positive control. The addition of P. gingivalis produced immediate reduction of cytokine levels within the first hours of incubation irrespective of lactobacilli strains co-cultured with epithelial cells. According to these studies strains among the L. delbrueckii subsp. bulgaricus species may have beneficial probiotic properties in the mouth. Their potential in prevention and management of common oral infectious diseases needs to be further studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc is mediated by quorum sensing (QS), which is a population density -dependent cell-to-cell communication mechanism used by many Gram-negative bacteria. In these bacteria N-acylhomoserine lactones (AHSL), act as diffusible signaling molecules enabling communication between bacterial cells. The AHSLs are structurally diverse and differ in their acyl chain length. This gives the bacteria signaling specificity and enables the recognition and communication within its own species. In order to detect and respond to the AHSLs the bacteria use QS regulators, LuxR-type proteins. The aim of this study was to get a deeper understanding of the Ecc QS system. In the first part of the study we showed that even different strains of Ecc use different dialects and of physiological concentrations, only the cognate AHSL with the correct acyl chain is recognized as a signal that can switch on virulence genes. The molecular basis of the substrate specificity of the AHSL synthase ExpI was investigated in order to recognize the acyl chain length specificity determinants of distinct AHSL synthases. Several critical residues that define the size of the substrate-binding pocket were identified. We demonstrated that in the ExpISCC1 mutations M127T and F69L are sufficient to change the N-3-oxohexanoyl-L-homoserine lactone producing ExpISCC1 to an N-3-oxooctanoyl-L-homoserine lactone (3-oxo-C8-HSL) producing enzyme. In the second study the means of sensing specificity and response to the AHSL signaling molecule were investigated. We demonstrated that the AHSL receptor ExpR1 of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. In addition we identified a second AHSL receptor ExpR2 with a novel property to sense AHSLs with different acyl chain lengths. In the absence of AHSLs ExpR1 and ExpR2 were found to act synergistically to repress the virulence gene expression. This repression was shown to be released by addition of AHSLs and appears to be largely mediated by the global negative regulator RsmA. In the third study random transposon mutagenesis was used to widen the knowledge of the Ecc QS regulon. Two new QS-controlled target genes, encoding a DNA-binding regulator Hor and a plant ferredoxin-like protein FerE, were identified. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and as expression of PCWDE genes mediated by the RsmA repressor. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production, while FerE was shown to contribute to oxidative stress tolerance and in planta fitness of the bacteria. In addition our results suggest that QS is central to the control of oxidative stress tolerance in Ecc. In conclusion, these results indicate that Ecc strain SCC3193 is able to react and respond both to the cognate AHSL signal and the signals produced by other bacterial species, in order to control a wide variety of functions in the plant pathogen Ecc.