8 resultados para SUBSP CAPRIPNEUMONIAE STRAINS

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yogurt consumption has been related to longevity of some populations living on the Balkans. Yogurt starter L. delbrueckii subsp. bulgaricus and Str. thermophilus have been recognized as probiotics with verified beneficial health effects. The oral cavity emerges as a arget for probiotic applications. Probiotics have demonstrated promising results in controlling dental diseases and oral yeast infections. However, L. bulgaricus despite its broad availability in dairy products has not been evaluated for probiotic activity in the mouth. These series of studies investigated in vitro properties of L. bulgaricus to outline its potential as an oral probiotic. Prerequisite probiotic properties in the mouth are resistance to oral defense mechanisms, adherence to saliva-coated surfaces, and inhibition of oral pathogens. L. bulgaricus strains showed a strain-dependent inhibition of oral streptococci and Aggregatibacter actinomycetemcomitans, whereas none of the dairy starter strains could affect growth of Porphyromonas gingivalis and Fusobacterium nucleatum. Adhesion is a factor contributing to colonization of the species at the target site. Radiolabeled L. bulgaricus strains and L. rhamnosus GG were tested for their ability to adhere to saliva-coated surfaces. The effects of lysozyme on adhesion and adhesion of Streptococcus sanguinis after lactobacilli pretreatment were also assessed. Adhesion of L. bulgaricus remained lower in comparison to L. rhamnosus GG. One L. bulgaricus strain showed binding frequency comparable to S. sanguinis. Lysozyme pretreatment significantly increased Lactobacillus adhesion. Low gelatinolytic activity was observed for all strains and no conversion of proMMP-9 to its active form was induced by L. bulgaricus. Safety assessment ruled out deleterious effects of L. bulgaricus on extracellular matrix structures. Cytokine response of oral epithelial cells was assessed by measuring IL-8 and TNF-α in cell culture supernatants. The effect of P. gingivalis on cytokine secretion after lactobacilli pretreatment was also assessed. A strain- and time-dependent induction of IL-8 was observed with live bacteria inducing the highest levels of cytokine secretion. Levels of TNF-α were low and only one of ten L. bulgaricus strains stimulated TNF-α secretion similar to positive control. The addition of P. gingivalis produced immediate reduction of cytokine levels within the first hours of incubation irrespective of lactobacilli strains co-cultured with epithelial cells. According to these studies strains among the L. delbrueckii subsp. bulgaricus species may have beneficial probiotic properties in the mouth. Their potential in prevention and management of common oral infectious diseases needs to be further studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc is mediated by quorum sensing (QS), which is a population density -dependent cell-to-cell communication mechanism used by many Gram-negative bacteria. In these bacteria N-acylhomoserine lactones (AHSL), act as diffusible signaling molecules enabling communication between bacterial cells. The AHSLs are structurally diverse and differ in their acyl chain length. This gives the bacteria signaling specificity and enables the recognition and communication within its own species. In order to detect and respond to the AHSLs the bacteria use QS regulators, LuxR-type proteins. The aim of this study was to get a deeper understanding of the Ecc QS system. In the first part of the study we showed that even different strains of Ecc use different dialects and of physiological concentrations, only the cognate AHSL with the correct acyl chain is recognized as a signal that can switch on virulence genes. The molecular basis of the substrate specificity of the AHSL synthase ExpI was investigated in order to recognize the acyl chain length specificity determinants of distinct AHSL synthases. Several critical residues that define the size of the substrate-binding pocket were identified. We demonstrated that in the ExpISCC1 mutations M127T and F69L are sufficient to change the N-3-oxohexanoyl-L-homoserine lactone producing ExpISCC1 to an N-3-oxooctanoyl-L-homoserine lactone (3-oxo-C8-HSL) producing enzyme. In the second study the means of sensing specificity and response to the AHSL signaling molecule were investigated. We demonstrated that the AHSL receptor ExpR1 of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. In addition we identified a second AHSL receptor ExpR2 with a novel property to sense AHSLs with different acyl chain lengths. In the absence of AHSLs ExpR1 and ExpR2 were found to act synergistically to repress the virulence gene expression. This repression was shown to be released by addition of AHSLs and appears to be largely mediated by the global negative regulator RsmA. In the third study random transposon mutagenesis was used to widen the knowledge of the Ecc QS regulon. Two new QS-controlled target genes, encoding a DNA-binding regulator Hor and a plant ferredoxin-like protein FerE, were identified. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and as expression of PCWDE genes mediated by the RsmA repressor. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production, while FerE was shown to contribute to oxidative stress tolerance and in planta fitness of the bacteria. In addition our results suggest that QS is central to the control of oxidative stress tolerance in Ecc. In conclusion, these results indicate that Ecc strain SCC3193 is able to react and respond both to the cognate AHSL signal and the signals produced by other bacterial species, in order to control a wide variety of functions in the plant pathogen Ecc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B. cereus is one of the most frequent occurring bacteria in foods . It produces several heat-labile enterotoxins and one stable non-protein toxin, cereulide (emetic), which may be pre-formed in food. Cereulide is a heat stable peptide whose structure and mechanism of action were in the past decade elucidated. Until this work, the detection of cereulide was done by biological assays. With my mentors, I developed the first quantitative chemical assay for cereulide. The assay is based on liquid chromatography (HPLC) combined with ion trap mass spectrometry and the calibration is done with valinomycin and purified cereulide. To detect and quantitate valinomycin and cereulide, their [NH4+] adducts, m/z 1128.9 and m/z 1171 respectively, were used. This was a breakthrough in the cereulide research and became a very powerful tool of investigation. This tool made it possible to prove for the first time that the toxin produced by B. cereus in heat-treated food caused human illness. Until this thesis work (Paper II), cereulide producing B. cereus strains were believed to represent a homogenous group of clonal strains. The cereulide producing strains investigated in those studies originated mostly from food poisoning incidents. We used strains of many origins and analyzed them using a polyphasic approach. We found that the cereulide producing B. cereus strains are genetically and biologically more diverse than assumed in earlier studies. The strains diverge in the adenylate kinase (adk) gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three patterns), tyrosin decomposition, haemolysis and lecithine hydrolysis (two phenotypes). Our study was the first demonstration of diversity within the cereulide producing strains of B. cereus. To manage the risk for cereulide production in food, understanding is needed on factors that may upregulate cereulide production in a given food matrix and the environmental factors affecting it. As a contribution towards this direction, we adjusted the growth environment and measured the cereulide production by strains selected for diversity. The temperature range where cereulide is produced was narrower than that for growth for most of the producer strains. Most cereulide was by most strains produced at room temperature (20 - 23ºC). Exceptions to this were two faecal isolates which produced the same amount of cereulide from 23 ºC up until 39ºC. We also found that at 37º C the choice of growth media for cereulide production differed from that at the room temperature. The food composition and temperature may thus be a key for understanding cereulide production in foods as well as in the gut. We investigated the contents of [K+], [Na+] and amino acids of six growth media. Statistical evaluation indicated a significant positive correlation between the ratio [K+]:[Na+] and the production of cereulide, but only when the concentrations of glycine and [Na+] were constant. Of the amino acids only glycine correlated positively with high cereulide production. Glycine is used worldwide as food additive (E 640), flavor modifier, humectant, acidity regulator, and is permitted in the European Union countries, with no regulatory quantitative limitation, in most types of foods. B. subtilis group members are endospore-forming bacteria ubiquitous in the environment, similar to B. cereus in this respect. Bacillus species other than B. cereus have only sporadically been identified as causative agents of food-borne illnesses. We found (Paper IV) that food-borne isolates of B. subtilis and B. mojavensis produced amylosin. It is possible that amylosin was the agent responsible for the food-borne illness, since no other toxic substance was found in the strains. This is the first report on amylosin production by strains isolated from food. We found that the temperature requirement for amylosin production was higher for the B. subtilis strain F 2564/96, a mesophilic producer, than for B. mojavensis strains eela 2293 and B 31, psychrotolerant producers. We also found that an atmosphere with low oxygen did not prevent the production of amylosin. Ready-to-eat foods packaged in micro-aerophilic atmosphere and/or stored at temperatures above 10 °C, may thus pose a risk when toxigenic strains of B. subtilis or B. mojavensis are present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose and maltotriose are the two most abundant sugars in brewer s wort, and thus brewer s yeast s ability to utilize them efficiently is of major importance in the brewing process. The increasing tendency to utilize high and very-high-gravity worts containing increased concentrations of maltose and maltotriose renders the need for efficient transport of these sugars even more pronounced. Residual maltose and especially maltotriose are quite often present especially after high and very-high-gravity fermentations. Sugar uptake capacity has been shown to be the rate limiting factor for maltose and maltotriose utilization. The main aim of the present study was to find novel ways to improve maltose and maltotriose utilization during the main fermentation. Maltose and maltotriose uptake characteristics of several ale and lager strains were studied. Genotype determination of the genes needed for maltose and maltotriose utilization was performed. Maltose uptake inhibition studies were performed to reveal the dominant transporter types actually functioning in each of the strains. Temperature-dependence of maltose transport was studied for ale and for lager strains as well as for each of the single sugar transporter proteins Agt1p, Malx1p and Mtt1p. The AGT1 promoter regions of one ale and two lager strains were sequenced by chromosome walking and the promoter elements were searched for using computational methods. The results showed that ale and lager strains predominantly use different maltose and maltotriose transporter types for maltose and maltotriose uptake. Agt1 transporter was found to be the dominant maltose/maltotriose transporter in the ale strains whereas Malx1 and Mtt1- type transporters dominated in the lager strains. All lager strains studied were found to possess a non-functional Agt1 transporter. The ale strains were observed to be more sensitive to temperature decrease in their maltose uptake compared to the lager strains. Single transporters were observed to differ in their sensitivity to temperature decrease and their temperature-dependence was shown to decrease in the order Agt1≥Malx1>Mtt1. The different temperature-dependence between the ale and lager strains was observed to be due to the different dominant maltose/maltotriose transporters ale and lager strains possessed. The AGT1 promoter regions of ale and lager strains were found to differ markedly from the corresponding regions of laboratory strains. The ale strain was found to possess an extra MAL-activator binding site compared to the lager strains. Improved maltose and maltotriose uptake capacity was obtained with a modified lager strain where the AGT1 gene was repaired and put under the control of a strong promoter. Modified strains fermented wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. Significant savings in the main fermentation time were obtained when modified strains were used. In high-gravity wort fermentations 8 20% and in very-high-gravity wort fermentations even 11 37% time savings were obtained. These are economically significant changes and would cause a marked increase in annual output from the same-size of brewhouse and fermentor facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"In this study, for the first time, two distinct genetic lineages of Puumala virus (PUUV) were found within a small sampling area and within a single host genetic lineage (Ural mtDNA) at Pallasjarvi, northern Finland. Lung tissue samples of 171 bank voles (Myodes glareolus) trapped in September 1998 were screened for the presence of PUUV nucleocapsid antigen and 25 were found to be positive. Partial sequences of the PUUV small (S), medium (M) and large (L) genome segments were recovered from these samples using RT-PCR. Phylogenetic analysis revealed two genetic groups of PUUV sequences that belonged to the Finnish and north Scandinavian lineages. This presented a unique opportunity to study inter-lineage reassortment in PUUV; indeed, 32% of the studied bank voles appeared to carry reassortant virus genomes. Thus, the frequency of inter-lineage reassortment in PUUV was comparable to that of intra-lineage reassortment observed previously (Razzauti, M., Plyusnina, A., Henttonen, H. & Plyusnin, A. (2008). J Gen Virol 89, 1649-1660). Of six possible reassortant S/M/L combinations, only two were found at Pallasjarvi and, notably, in all reassortants, both S and L segments originated from the same genetic lineage, suggesting a non-random pattern for the reassortment. These findings are discussed in connection to PUUV evolution in Fermoscandia."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C. jejuni constitutes the majority of Campylobacter strains isolated from patients in Finland, and C. coli strains are also reported. To improve the species identification, a combination of phenotype- and genotype-based methods was applied. Standardising the cell suspension turbidity in the hippurate hydrolysis test enabled the reliable identification of hippurate-positive Campylobacter strains as C. jejuni. The detection of species-specific genes by PCR showed that about 30% of the hippurate-negative strains were C. jejuni. Three typing methods, serotyping, PCR-RFLP analysis of LOS biosynthesis genes and pulsed-field gel electrophoresis (PFGE) were evaluated as epidemiological typing tools for C. jejuni. The high number of non-typeable strains lowered the discriminatory ability of serotyping. PCR-RFLP typing offered high discrimination for both serotypeable and non-typeable strains, but the correlation between serotypes and RFLP-types was not high enough to enable its use for molecular serotyping of non-typeable strains. PFGE was a highly discriminative typing method. Although the use of two restriction enzymes generally increases the discriminatory ability, KpnI alone offered almost as high discrimination as the use of SmaI and KpnI. The characteristic seasonal distribution of Campylobacter infections with a peak in summer and low incidence in winter was mainly due to domestically acquired infections. Of the C. jejuni strains, 41% were of domestic origin compared to only 17% of the C. coli strains. Serotypes Pen 12, Pen 6,7 and Pen 27 were significantly associated with domestic C. jejuni infections, Pen 1,44, Pen 3 and Pen 37 with travel-related infections. Pen 2 and Pen 4-complex were common both in domestic and travel-related infections. Serotype Pen 2 was less common among patients 60 years or older than in younger patients, more prevalent in Western Finland than in other parts of the country and more prevalent than other serotypes in winter. The source of Pen 2 infections may be related to cattle, since Pen 2 is the most common serotype in isolates from Finnish cattle. PFGE subtypes among isolates from patients and chickens during the summer 2003 and from cattle during the whole year were compared. The analysis of indistinguishable SmaI/KpnI subtypes suggested that up to 31% of the human infections may have been mediated by chickens and 19% by cattle. Human strains isolated during two one-year sampling periods were studied by PFGE. Of the domestic strains, 69% belonged to SmaI subtypes found during both sampling periods. Four SmaI subtypes accounted for 45% of the domestic strains, further typing of these subtypes by KpnI revealed six temporally persistent SmaI/KpnI subtypes. They were only occasionally identified in travel-related strains, and therefore, can be considered to be national subtypes. Each subtype was associated with a serotype: Pen 2, Pen 12, Pen 27, Pen 4-complex, Pen 41, and Pen 57. Five of these subtypes were identified in cattle (S5/K27, S7/K1, S7/K2, S7/K5 and S64/K19), and two in chickens (S7/K1 and S64/K19) with a temporal association with human infections in 2003. Cattle are more likely potential sources of these persistent subtypes, since long-term excretion of Campylobacter strains by cattle has been reported.