2 resultados para STRs

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the years, a wide range of methods to verify identity have been developed. Molecular markers have been used for identification since the 1920s, commencing with blood types and culminating with the advent of DNA techniques in the 1980s. Identification is required by authorities in many occasions, e.g. in disputed paternity cases, identification of deceased, or crime investigation. To clarify maternal and paternal lineages, uniparental DNA markers in mtDNA and Y-chromosome can be utilized. These markers have several advantages: male specific Y-chromosome can be used to identify a male from a mixture of male and female cells, e.g. in rape cases. MtDNA is durable and has a high copy number, allowing analyses even from old or degraded samples. However, both markers are lineage-specific, not individualizing, and susceptible to genetic drift. Prior to the application of any DNA marker in forensic casework, it is of utmost importance to investigate its qualities and peculiarities in the target population. Earlier studies on the Finnish population have shown reduced variation in the Y-chromosome, but in mtDNA results have been ambiguous. The obtained results confirmed the low diversity in Y-chromosome in Finland. Detailed population analysis revealed large regional differences, and extremely reduced diversity especially in East Finland. Analysis of the qualities affecting Y-chromosomal short tandem repeat (Y-STR) variation and mutation frequencies, and search of new polymorphic markers resulted a set of Y-STRs with especially high diversity in Finland. Contrary to Y-chromosome, neither reduced diversity nor regional differences were found in mtDNA within Finland. In fact, mtDNA diversity was found similar to other European populations. The revealed peculiarities in the uniparental markers are a legacy of the Finnish population history. The obtained results challenge the traditional explanation which emphasizes relatively recent founder effects creating the observed east-west patterns. Uniparentally inherited markers, both mtDNA and Y-chromosome, are applicable for identification purposes in Finland. By adjusting the analysed Y marker set to meet the characteristics of Finnish population, Y-chromosomal diversity increases and the regional differentiation decreases, resulting increase in discrimination power and thus usefulness of Y-chromosomal analysis in forensic casework.