7 resultados para Robot Vision
em Helda - Digital Repository of University of Helsinki
Resumo:
This study investigated questions related to half-occlusion processing in human stereoscopic vision: (1) How does the depth location of a half-occluding figure affect the depth localization of adjacent monocular objects? (2) Is three-dimensional slant around vertical axis (geometric effect) affected by half-occlusion constraints? and (3) How the half-occlusion constraints and surface formation processes are manifested in stereoscopic capture? Our results showed that the depth localization of binocular objects affects the depth localization of discrete monocular objects. We also showed that the visual system has a preference for a frontoparallel surface interpretation if the half-occlusion configuration allows multiple interpretation alternatives. When the surface formation was constrained by textures, our results showed that a process of rematching spreading determines the resulting perception and that the spreading can be limited by illusory contours that support the presence of binocularly unmatched figures. The unmatched figures could be present, if the inducing figures producing the illusory surface contained binocular image differences that provided cues for quantitative da Vinci stereopsis. These findings provide evidence of the significant role of half-occlusions in stereoscopic processing.
Resumo:
The earliest stages of human cortical visual processing can be conceived as extraction of local stimulus features. However, more complex visual functions, such as object recognition, require integration of multiple features. Recently, neural processes underlying feature integration in the visual system have been under intensive study. A specialized mid-level stage preceding the object recognition stage has been proposed to account for the processing of contours, surfaces and shapes as well as configuration. This thesis consists of four experimental, psychophysical studies on human visual feature integration. In two studies, classification image a recently developed psychophysical reverse correlation method was used. In this method visual noise is added to near-threshold stimuli. By investigating the relationship between random features in the noise and observer s perceptual decision in each trial, it is possible to estimate what features of the stimuli are critical for the task. The method allows visualizing the critical features that are used in a psychophysical task directly as a spatial correlation map, yielding an effective "behavioral receptive field". Visual context is known to modulate the perception of stimulus features. Some of these interactions are quite complex, and it is not known whether they reflect early or late stages of perceptual processing. The first study investigated the mechanisms of collinear facilitation, where nearby collinear Gabor flankers increase the detectability of a central Gabor. The behavioral receptive field of the mechanism mediating the detection of the central Gabor stimulus was measured by the classification image method. The results show that collinear flankers increase the extent of the behavioral receptive field for the central Gabor, in the direction of the flankers. The increased sensitivity at the ends of the receptive field suggests a low-level explanation for the facilitation. The second study investigated how visual features are integrated into percepts of surface brightness. A novel variant of the classification image method with brightness matching task was used. Many theories assume that perceived brightness is based on the analysis of luminance border features. Here, for the first time this assumption was directly tested. The classification images show that the perceived brightness of both an illusory Craik-O Brien-Cornsweet stimulus and a real uniform step stimulus depends solely on the border. Moreover, the spatial tuning of the features remains almost constant when the stimulus size is changed, suggesting that brightness perception is based on the output of a single spatial frequency channel. The third and fourth studies investigated global form integration in random-dot Glass patterns. In these patterns, a global form can be immediately perceived, if even a small proportion of random dots are paired to dipoles according to a geometrical rule. In the third study the discrimination of orientation structure in highly coherent concentric and Cartesian (straight) Glass patterns was measured. The results showed that the global form was more efficiently discriminated in concentric patterns. The fourth study investigated how form detectability depends on the global regularity of the Glass pattern. The local structure was either Cartesian or curved. It was shown that randomizing the local orientation deteriorated the performance only with the curved pattern. The results give support for the idea that curved and Cartesian patterns are processed in at least partially separate neural systems.
Resumo:
The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.
Resumo:
Visual information processing in brain proceeds in both serial and parallel fashion throughout various functionally distinct hierarchically organised cortical areas. Feedforward signals from retina and hierarchically lower cortical levels are the major activators of visual neurons, but top-down and feedback signals from higher level cortical areas have a modulating effect on neural processing. My work concentrates on visual encoding in hierarchically low level cortical visual areas in human brain and examines neural processing especially in cortical representation of visual field periphery. I use magnetoencephalography and functional magnetic resonance imaging to measure neuromagnetic and hemodynamic responses during visual stimulation and oculomotor and cognitive tasks from healthy volunteers. My thesis comprises six publications. Visual cortex forms a great challenge for modeling of neuromagnetic sources. My work shows that a priori information of source locations are needed for modeling of neuromagnetic sources in visual cortex. In addition, my work examines other potential confounding factors in vision studies such as light scatter inside the eye which may result in erroneous responses in cortex outside the representation of stimulated region, and eye movements and attention. I mapped cortical representations of peripheral visual field and identified a putative human homologue of functional area V6 of the macaque in the posterior bank of parieto-occipital sulcus. My work shows that human V6 activates during eye-movements and that it responds to visual motion at short latencies. These findings suggest that human V6, like its monkey homologue, is related to fast processing of visual stimuli and visually guided movements. I demonstrate that peripheral vision is functionally related to eye-movements and connected to rapid stream of functional areas that process visual motion. In addition, my work shows two different forms of top-down modulation of neural processing in the hierachically lowest cortical levels; one that is related to dorsal stream activation and may reflect motor processing or resetting signals that prepare visual cortex for change in the environment and another local signal enhancement at the attended region that reflects local feed-back signal and may perceptionally increase the stimulus saliency.
Resumo:
I avhandlingen analyseras arbetsprocesserna vid en webbredaktion. Undersökningen är en etnografisk fallstudie där Hufvudstadsbladets webbproduktion fungerar som case. Den övergripande frågeställningen är hur växelverkan mellan tidningsredaktionen och webbredaktionen fungerar och varför. Syftet var att hitta och synliggöra de underliggande spänningar i organisationen som bimedialiteten kan ha gett upphov till, och analysera produktionen mot bakgrund av tidigare forskning. Analysen behandlar tre områden som ofta återkommer i mediekonvergensforskningen, det vill säga organisation, innehåll och inställning. Forskningsmaterialet är insamlat med hjälp av observation, intervjuer och en e-postenkät. Arbetet på redaktionen observerades under sex arbetsskift. Webbreporterns arbete observerades, observationerna antecknades och efter varje arbetsskift bandades en intervju med webbreportern. Utöver dessa intervjuer gjordes ytterligare tre intervjuer med två nyhetschefer och chefredaktören. En e-postenkät med öppna frågor skickades ut till samtliga redaktionsmedlemmar. Avhandlingen tar avstamp i mediekonvergensforskning, redaktionsforskning och aktivitetsteori. Eftersom den teoretiska utgångspunkten delvis ligger inom aktivitetsteori och utvecklande arbetsforskning räknades samtidigt störningar i arbetsprocessen för att kunna identifiera underliggande spänningar i organisationen. Alla händelser som innebar ett längre eller kortare avbrott i arbetsprocessen antecknades och delades in i kategorier. Sammanlagt sextio störningar identifierades, varav den största andelen, en tredjedel, konstaterades bero på organisations- och kommunikationsfaktorer, främst till följd av bristfällig intern kommunikation. Slutsatserna är webbproduktionen till följd av heterogena objekt i aktivitetssystemet - oklara mål och oklarhet gällande webbens roll i organisationen sitter fast i klyftan mellan ledningens vision och verkligheten på redaktionen. Ett flertal motstridiga uppfattningar om webbproduktionens roll råder på redaktionen. Det leder till störningar i arbetsprocessen som i sin tur gör att produktionen haltar och inte utvecklas. Oklarheten kring målen leder till oklarhet kring konkret praxis, kommunikationssvårigheter, missförstånd och en sned arbetsfördelning, som samtliga inverkar på smidigheten i produktionen.
Resumo:
Modern smart phones often come with a significant amount of computational power and an integrated digital camera making them an ideal platform for intelligents assistants. This work is restricted to retail environments, where users could be provided with for example navigational in- structions to desired products or information about special offers within their close proximity. This kind of applications usually require information about the user's current location in the domain environment, which in our case corresponds to a retail store. We propose a vision based positioning approach that recognizes products the user's mobile phone's camera is currently pointing at. The products are related to locations within the store, which enables us to locate the user by pointing the mobile phone's camera to a group of products. The first step of our method is to extract meaningful features from digital images. We use the Scale- Invariant Feature Transform SIFT algorithm, which extracts features that are highly distinctive in the sense that they can be correctly matched against a large database of features from many images. We collect a comprehensive set of images from all meaningful locations within our domain and extract the SIFT features from each of these images. As the SIFT features are of high dimensionality and thus comparing individual features is infeasible, we apply the Bags of Keypoints method which creates a generic representation, visual category, from all features extracted from images taken from a specific location. A category for an unseen image can be deduced by extracting the corresponding SIFT features and by choosing the category that best fits the extracted features. We have applied the proposed method within a Finnish supermarket. We consider grocery shelves as categories which is a sufficient level of accuracy to help users navigate or to provide useful information about nearby products. We achieve a 40% accuracy which is quite low for commercial applications while significantly outperforming the random guess baseline. Our results suggest that the accuracy of the classification could be increased with a deeper analysis on the domain and by combining existing positioning methods with ours.