1 resultado para Retinyl palmitate
em Helda - Digital Repository of University of Helsinki
Resumo:
Disorders resulting from degenerative changes in the nervous system are progressive and incurable. Both environmental and inherited factors affect neuron function, and neurodegenerative diseases are often the sum of both factors. The cellular events leading to neuronal death are still mostly unknown. Monogenic diseases can offer a model for studying the mechanisms of neurodegeneration. Neuronal ceroid lipofuscinoses, or NCLs, are a group of monogenic, recessively inherited diseases affecting mostly children. NCLs cause severe and specific loss of neurons in the central nervous system, resulting in the deterioration of motor and mental skills and leading to premature death. In this thesis, the focus has been on two forms of NCL, the infantile NCL (INCL, CLN1) and the Finnish variant of late infantile NCL (vLINCLFin, CLN5). INCL is caused by mutations in the CLN1 gene encoding for the PPT1 (palmitoyl protein thioesterase 1) enzyme. PPT1 removes a palmitate moiety from proteins in experimental conditions, but its substrates in vivo are not known. In the Finnish variant of late infantile NCL (vLINCLFin), the CLN5 gene is defective, but the function of the encoded CLN5 has remained unknown. The aim of this thesis was to elucidate the disease mechanisms of these two NCL diseases by focusing on the molecular interactions of the defective proteins. In this work, the first interaction partner for PPT1, the mitochondrial F1-ATP synthase, was described. This protein has been linked to HDL metabolism in addition to its well-known role in the mitochondrial energy production. The connection between PPT1 and the F1-ATP synthase was studied utilizing the INCL-disease model, the genetically modified Ppt1-deficient mice. The levels of F1-ATP synthase subunits were increased on the surface of Ppt1-deficient neurons when compared to controls. We also detected several changes in lipid metabolism both at the cellular and systemic levels in Ppt1-deficient mice when compared to controls. The interactions between different NCL proteins were also elucidated. We were able to detect novel interactions between CLN5 and other NCL proteins, and to replicate the previously reported interactions. Some of the novel interactions influenced the intracellular trafficking of the proteins. The multiple interactions between CLN5 and other NCL proteins suggest a connection between the NCL subtypes at the cellular level. The main results of this thesis elicit information about the neuronal function of PPT1. The connection between INCL and neuronal lipid metabolism introduces a new perspective to this rather poorly characterized subject. The evidence of the interactions between NCL proteins provides the basis for future research trying to untangle the NCL disease mechanisms and to develop strategies for therapies.