2 resultados para Reticulação polimérica interfacial
em Helda - Digital Repository of University of Helsinki
Resumo:
Powders are essential materials in the pharmaceutical industry, being involved in majority of all drug manufacturing. Powder flow and particle size are central particle properties addressed by means of particle engineering. The aim of the thesis was to gain knowledge on powder processing with restricted liquid addition, with a primary focus on particle coating and early granule growth. Furthermore, characterisation of this kind of processes was performed. A thin coating layer of hydroxypropyl methylcellulose was applied on individual particles of ibuprofen in a fluidised bed top-spray process. The polymeric coating improved the flow properties of the powder. The improvement was strongly related to relative humidity, which can be seen as an indicator of a change in surface hydrophilicity caused by the coating. The ibuprofen used in the present study had a d50 of 40 μm and thus belongs to the Geldart group C powders, which can be considered as challenging materials in top-spray coating processes. Ibuprofen was similarly coated using a novel ultrasound-assisted coating method. The results were in line with those obtained from powders coated in the fluidised bed process mentioned above. It was found that the ultrasound-assisted method was capable of coating single particles with a simple and robust setup. Granule growth in a fluidised bed process was inhibited by feeding the liquid in pulses. The results showed that the length of the pulsing cycles is of importance, and can be used to adjust granule growth. Moreover, pulsed liquid feed was found to be of greater significance to granule growth in high inlet air relative humidity. Liquid feed pulsing can thus be used as a tool in particle size targeting in fluidised bed processes and in compensating for changes in relative humidity of the inlet air. The nozzle function of a two-fluid external mixing pneumatic nozzle, typical for small scale pharmaceutical fluidised bed processes, was studied in situ in an ongoing fluidised bed process with particle tracking velocimetry. It was found that the liquid droplets undergo coalescence as they proceed away from the nozzle head. The coalescence was expected to increase droplet speed, which was confirmed in the study. The spray turbulence was studied, and the results showed turbulence caused by the event of atomisation and by the oppositely directed fluidising air. It was concluded that particle tracking velocimetry is a suitable tool for in situ spray characterisation. The light transmission through dense particulate systems was found to carry information on particle size and packing density as expected based on the theory of light scattering by solids. It was possible to differentiate binary blends consisting of components with differences in optical properties. Light transmission showed potential as a rapid, simple and inexpensive tool in characterisation of particulate systems giving information on changes in particle systems, which could be utilised in basic process diagnostics.
Resumo:
Nanoclusters are objects made up of several to thousands of atoms and form a transitional state of matter between single atoms and bulk materials. Due to their large surface-to-volume ratio, nanoclusters exhibit exciting and yet poorly studied size dependent properties. When deposited directly on bare metal surfaces, the interaction of the cluster with the substrate leads to alteration of the cluster properties, making it less or even non-functional. Surfaces modified with self-assembled monolayers (SAMs) were shown to form an interesting alternative platform, because of the possibility to control wettability by decreasing the surface reactivity and to add functionalities to pre-formed nanoclusters. In this thesis, the underlying size effects and the influence of the nanocluster environment are investigated. The emphasis is on the structural and magnetic properties of nanoclusters and their interaction with thiol SAMs. We report, for the first time, a ferromagnetic-like spin-glass behaviour of uncapped nanosized Au islands tens of nanometres in size. The flattening kinetics of the nanocluster deposition on thiol SAMs are shown to be mediated mainly by the thiol terminal group, as well as the deposition energy and the particle size distribution. On the other hand, a new mechanism for the penetration of the deposited nanoclusters through the monolayers is presented, which is fundamentally different from those reported for atom deposition on alkanethiols. The impinging cluster is shown to compress the thiol layer against the Au surface and subsequently intercalate at the thiol-Au interface. The compressed thiols try then to straighten and push the cluster away from the surface. Depending on the cluster size, this restoring force may or may not enable a covalent cluster-surface bond formation, giving rise to various cluster-surface binding patterns. Compression and straightening of the thiol molecules pinpoint the elastic nature of the SAMs, which has been investigated in this thesis using nanoindentation. The nanoindenation method has been applied to SAMs of varied tail groups, giving insight into the mechanical properties of thiol modified metal surfaces.