8 resultados para Research, Industrial.
em Helda - Digital Repository of University of Helsinki
Resumo:
Ei saatavilla
Resumo:
Plastic surfaces are a group of materials used for many purposes. The present study was focused on methods for investigation of surface topography, wearing and cleanability of polyvinyl chloride (PVC) model surfaces and industrial plastic surfaces. Contact profilometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are powerful methods for studying the topography of plastic surfaces. Although they have their own limitations, they are together an effective tool providing useful information on surface topography, especially when studying laboratory-made PVC model surfaces with known chemical compositions and structures. All examined laboratory-made PVC plastic surfaces examined in this work could be considered as smooth according to both AFM and profilometer measurements because height differences are in the nanoscale on every surface. Industrial plastic surfaces are a complex group of materials because of their chemical and topographical heterogeneity, but they are nevertheless important reference materials when developing cleaning and wearing methods. According to the results of this study the Soiling and Wearing Drum and the Frick-Taber methods are very useful when simulating three-body wearing of plastic surfaces. Both the investigated wearing methods can be used to compare the wearing of different plastic materials using appropriate evaluation methods of wearing and industrial use. In this study, physical methods were developed and adapted from other fields of material research to cleanability studies. The thesis focuses on the methodology for investigating the cleanability of plastic surfaces under realistic conditions, where surface topography and the effect of wear cleanability were among the major topics. A colorimetric method proved to be suitable for examining the cleanability of the industrial plastic surfaces. The results were utilized to evaluate the relationship between cleanability and the surface properties of plastic surfaces. The devices and methods used in the work can be utilized both in material research and product development.
Resumo:
There is an urgent interest in marketing to move away from neo-classical value definitions suggesting that value creation is a process of exchanging goods for money. In the present paper, value creation is conceptualized as an integration of two distinct, yet closely coupled processes. First, actors co-create what this paper calls an underlying basis of value. This is done by interactively re-configuring resources. By relating and combining resources, activity sets, and risks across actor boundaries in novel ways actors create joint productivity gains – a concept very similar to density (Normann, 2001). Second, actors engage in a process of signification and evaluation. Signification implies co-constructing the meaning and worth of joint productivity gains co-created through interactive resource re-configuration, as well as sharing those gains through a pricing mechanism as value to involved actors. The conceptual framework highlights an all-important dynamics associated with ´value creation´ and ´value´ - a dynamics the paper claims has eluded past marketing research. The paper argues that the framework presented here is appropriate for the interactive service perspective, where value and value creation are not objectively given, but depend on the power of involved actors´ socially constructed frames to mobilize resources across actor boundaries in ways that ´enhance system well-being´ (Vargo et al., 2008). The paper contributes to research on Service Logic, Service-Dominant Logic, and Service Science.
Resumo:
Yhteenveto: Kemikaalien teollisesta käsittelystä vesieliöille aiheutuvien riskien arviointi mallin avulla.
Resumo:
In the study, the potential allowable cut in the district of Pohjois-Savo - based on the non-industrial private forest landowners' (NIPF) choices of timber management strategies - was clarified. Alternative timber management strategies were generated, and the choices and factors affecting the choices of timber management strategies by NIPF landowners were studied. The choices of timber management strategies were solved by maximizing the utility functions of the NIPF landowners. The parameters of the utility functions were estimated using the Analytic Hierarchy Process (AHP). The level of the potential allowable cut was compared to the cutting budgets based on the 7th and 8th National Forest Inventories (NFI7 and NFI8), to the combining of private forestry plans, and to the realized drain from non-industrial private forests. The potential allowable cut was calculated using the same MELA system as has been used in the calculation of the national cutting budget. The data consisted of the NIPF holdings (from the TASO planning system) that had been inventoried compartmentwise and had forestry plans made during the years 1984-1992. The NIPF landowners' choices of timber management strategies were clarified by a two-phase mail inquiry. The most preferred strategy obtained was "sustainability" (chosen by 62 % of landowners). The second in order of preference was "finance" (17 %) and the third was "saving" (11 %). "No cuttings", and "maximum cuttings" were the least preferred (9 % and 1 %, resp.). The factors promoting the choices of strategies with intensive cuttings were a) "farmer as forest owner" and "owning fields", b) "increase in the size of the forest holding", c) agriculture and forestry orientation in production, d) "decreasing short term stumpage earning expectations", e) "increasing intensity of future cuttings", and f) "choice of forest taxation system based on site productivity". The potential allowable cut defined in the study was 20 % higher than the average of the realized drain during the years 1988-1993, which in turn, was at the same level as the cutting budget based on the combining of forestry plans in eastern Finland. Respectively, the potential allowable cut defined in the study was 12 % lower than the NFI8-based greatest sustained allowable cut for the 1990s. Using the method presented in this study, timber management strategies can be clarified for non-industrial private forest landowners in different parts of Finland. Based on the choices of timber managemet strategies, regular cutting budgets can be calculated more realistically than before.
Resumo:
The factors affecting the non-industrial, private forest landowners' (hereafter referred to using the acronym NIPF) strategic decisions in management planning are studied. A genetic algorithm is used to induce a set of rules predicting potential cut of the landowners' choices of preferred timber management strategies. The rules are based on variables describing the characteristics of the landowners and their forest holdings. The predictive ability of a genetic algorithm is compared to linear regression analysis using identical data sets. The data are cross-validated seven times applying both genetic algorithm and regression analyses in order to examine the data-sensitivity and robustness of the generated models. The optimal rule set derived from genetic algorithm analyses included the following variables: mean initial volume, landowner's positive price expectations for the next eight years, landowner being classified as farmer, and preference for the recreational use of forest property. When tested with previously unseen test data, the optimal rule set resulted in a relative root mean square error of 0.40. In the regression analyses, the optimal regression equation consisted of the following variables: mean initial volume, proportion of forestry income, intention to cut extensively in future, and positive price expectations for the next two years. The R2 of the optimal regression equation was 0.34 and the relative root mean square error obtained from the test data was 0.38. In both models, mean initial volume and positive stumpage price expectations were entered as significant predictors of potential cut of preferred timber management strategy. When tested with the complete data set of 201 observations, both the optimal rule set and the optimal regression model achieved the same level of accuracy.
Resumo:
The methods of secondary wood processing are assumed to evolve over time and to affect the requirements set for the wood material and its suppliers. The study aimed at analysing the industrial operating modes applied by joinery and furniture manufacturers as sawnwood users. Industrial operating mode was defined as a pattern of important decisions and actions taken by a company which describes the company's level of adjustment in the late-industrial transition. A non-probabilistic sample of 127 companies was interviewed, including companies from Denmark, Germany, the Netherlands, and Finland. Fifty-two of the firms were furniture manufacturers and the other 75 were producing windows and doors. Variables related to business philosophy, production operations, and supplier choice criteria were measured and used as a basis for a customer typology; variables related to wood usage and perceived sawmill performance were measured to be used to profile the customer types. Factor analysis was used to determine the latent dimensions of industrial operating mode. Canonical correlations analysis was applied in developing the final base for classifying the observations. Non-hierarchical cluster analysis was employed to build a five-group typology of secondary wood processing firms; these ranged from traditional mass producers to late-industrial flexible manufacturers. There is a clear connection between the amount of late-industrial elements in a company and the share of special and customised sawnwood it uses. Those joinery or furniture manufacturers that are more late-industrial also are likely to use more component-type wood material and to appreciate customer-oriented technical precision. The results show that the change is towards the use of late-industrial sawnwood materials and late-industrial supplier relationships.
Resumo:
Human activities extract and displace different substances and materials from the earth s crust, thus causing various environmental problems, such as climate change, acidification and eutrophication. As problems have become more complicated, more holistic measures that consider the origins and sources of pollutants have been called for. Industrial ecology is a field of science that forms a comprehensive framework for studying the interactions between the modern technological society and the environment. Industrial ecology considers humans and their technologies to be part of the natural environment, not separate from it. Industrial operations form natural systems that must also function as such within the constraints set by the biosphere. Industrial symbiosis (IS) is a central concept of industrial ecology. Industrial symbiosis studies look at the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are exchanged by the actors of the system, thereby reducing the consumption of virgin material and energy inputs and the generation of waste and emissions. Companies are seen as part of the chains of suppliers and consumers that resemble those of natural ecosystems. The aim of this study was to analyse the environmental performance of an industrial symbiosis based on pulp and paper production, taking into account life cycle impacts as well. Life Cycle Assessment (LCA) is a tool for quantitatively and systematically evaluating the environmental aspects of a product, technology or service throughout its whole life cycle. Moreover, the Natural Step Sustainability Principles formed a conceptual framework for assessing the environmental performance of the case study symbiosis (Paper I). The environmental performance of the case study symbiosis was compared to four counterfactual reference scenarios in which the actors of the symbiosis operated on their own. The research methods used were process-based life cycle assessment (LCA) (Papers II and III) and hybrid LCA, which combines both process and input-output LCA (Paper IV). The results showed that the environmental impacts caused by the extraction and processing of the materials and the energy used by the symbiosis were considerable. If only the direct emissions and resource use of the symbiosis had been considered, less than half of the total environmental impacts of the system would have been taken into account. When the results were compared with the counterfactual reference scenarios, the net environmental impacts of the symbiosis were smaller than those of the reference scenarios. The reduction in environmental impacts was mainly due to changes in the way energy was produced. However, the results are sensitive to the way the reference scenarios are defined. LCA is a useful tool for assessing the overall environmental performance of industrial symbioses. It is recommended that in addition to the direct effects, the upstream impacts should be taken into account as well when assessing the environmental performance of industrial symbioses. Industrial symbiosis should be seen as part of the process of improving the environmental performance of a system. In some cases, it may be more efficient, from an environmental point of view, to focus on supply chain management instead.