2 resultados para Reporting Diversity project
em Helda - Digital Repository of University of Helsinki
Resumo:
This dissertation is a study of some aspects of theoretical philosophy of the early modern thinker Thomas Hobbes (1588-1679). The focal point of the work is Hobbes s conception of imagination, which is discussed from both a systematic and a historical point of view, as well as in the light of contemporary scholarship. I argue that though there are significant similarities between the view of Hobbes and that of his predecessors, he gives a novel theory of imagination, which clarifies not only early modern discussions on human nature, knowledge, science, and literary criticism, but above all his own versatile philosophy. The prologue of the dissertation introduces methodological principles and gives critical remarks on the standard view of Hobbes. In Chapter II, I discuss the prominent theories of imagination before Hobbes and link them to his account. I argue that though Hobbes adopted the Aristotelian framework, his view is not reduced to it, as he borrows from various sources, for instance, from the Stoics and from Renaissance thought. Chapters III and IV form the psychological part of the work. In the Chapter III I argue that imagination, not sense, is central in the basic cognitive operations of the mind and that imagination has a decisive role in Hobbes s theory of motivation. The Chapter IV concentrates on various questions of Hobbes s philosophy of language. The chapter ends with a defence of a less naturalistic reading of Hobbes s theory of human nature. Chapters V and VI form the epistemological part of the work. I suggest, contrary to what has been recently claimed, that though Hobbes s ideas of good literary style do have a point of contact with his philosophy (e.g. the psychology of creative process), his ideas in the field are independent of his project of demonstrative political science. Instead I argue that the novelty of his major political work, Leviathan (1651), is based on a new theory of knowledge which he continued to develop in the post-Leviathan works. Chapter VII seeks to connect the more theoretical conclusions of Chapters V and VI to Hobbes's idea(l) of science as well as to his philosophical practice. On the basis of Hobbes s own writings as well as some historical examinations, I argue that method is not an apt way to conceptualise Hobbes s philosophical practice. Contemporary readings of Hobbes s theory of science are critically discussed and the chapter ends with an analysis of Hobbes s actual argumentation. In addition to the concluding remarks, the epilogue suggest three things: first, imagination is central when trying to understand Hobbes s versatile philosophy; second, that it is misleading to depict Hobbes as a simple materialist, mechanist, and empiricist; and, third, that in terms of imagination his influence on early modern thought has not been fully appreciated.
Resumo:
Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.