3 resultados para Regular tessellations
em Helda - Digital Repository of University of Helsinki
Resumo:
The multiplier ideals of an ideal in a regular local ring form a family of ideals parametrized by non-negative rational numbers. As the rational number increases the corresponding multiplier ideal remains unchanged until at some point it gets strictly smaller. A rational number where this kind of diminishing occurs is called a jumping number of the ideal. In this manuscript we shall give an explicit formula for the jumping numbers of a simple complete ideal in a two dimensional regular local ring. In particular, we obtain a formula for the jumping numbers of an analytically irreducible plane curve. We then show that the jumping numbers determine the equisingularity class of the curve.
Resumo:
Koskenniemen Äärellistilaisen leikkauskieliopin (FSIG) lauseopilliset rajoitteet ovat loogisesti vähemmän kompleksisia kuin mihin niissä käytetty formalismi vittaisi. Osoittautuukin että vaikka Voutilaisen (1994) englannin kielelle laatima FSIG-kuvaus käyttää useita säännöllisten lausekkeiden laajennuksia, kieliopin kuvaus kokonaisuutenaan palautuu äärelliseen yhdistelmään unionia, komplementtia ja peräkkäinasettelua. Tämä on oleellinen parannus ENGFSIG:n descriptiiviseen kompleksisuuteen. Tulos avaa ovia FSIG-kuvauksen loogisten ominaisuuksien syvemmälle analyysille ja FSIG kuvausten mahdolliselle optimoinnillle. Todistus sisältää uuden kaavan, joka kääntää Koskenniemien rajoiteoperaation ilman markkerimerkkejä.