8 resultados para Radio detectors
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis examines Internet-radios and other web-based music services, and different ways these services are used in music listening in Finland. The research material was gathered in eight interviews that took place between spring 2005 and spring 2006 in southern Finland. The analysis distinguishes between five main types of Internet-radios: a) simulcasting, b) webcasting, c) podcasting, d) web-based sound archives, e) interactive music services. As a medium for music listening these combine aspects of computers and traditional radio. The role of Internet-radios in everyday life as well as different types of listening motivation are examined in the light of earlier research on taste, music listening and radio listening.
Resumo:
The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.
Resumo:
The TOTEM experiment at the LHC will measure the total proton-proton cross-section with a precision better than 1%, elastic proton scattering over a wide range in momentum transfer -t= p^2 theta^2 up to 10 GeV^2 and diffractive dissociation, including single, double and central diffraction topologies. The total cross-section will be measured with the luminosity independent method that requires the simultaneous measurements of the total inelastic rate and the elastic proton scattering down to four-momentum transfers of a few 10^-3 GeV^2, corresponding to leading protons scattered in angles of microradians from the interaction point. This will be achieved using silicon microstrip detectors, which offer attractive properties such as good spatial resolution (<20 um), fast response (O(10ns)) to particles and radiation hardness up to 10^14 "n"/cm^2. This work reports about the development of an innovative structure at the detector edge reducing the conventional dead width of 0.5-1 mm to 50-60 um, compatible with the requirements of the experiment.
Resumo:
By detecting leading protons produced in the Central Exclusive Diffractive process, p+p → p+X+p, one can measure the missing mass, and scan for possible new particle states such as the Higgs boson. This process augments - in a model independent way - the standard methods for new particle searches at the Large Hadron Collider (LHC) and will allow detailed analyses of the produced central system, such as the spin-parity properties of the Higgs boson. The exclusive central diffractive process makes possible precision studies of gluons at the LHC and complements the physics scenarios foreseen at the next e+e− linear collider. This thesis first presents the conclusions of the first systematic analysis of the expected precision measurement of the leading proton momentum and the accuracy of the reconstructed missing mass. In this initial analysis, the scattered protons are tracked along the LHC beam line and the uncertainties expected in beam transport and detection of the scattered leading protons are accounted for. The main focus of the thesis is in developing the necessary radiation hard precision detector technology for coping with the extremely demanding experimental environment of the LHC. This will be achieved by using a 3D silicon detector design, which in addition to the radiation hardness of up to 5×10^15 neutrons/cm2, offers properties such as a high signal-to- noise ratio, fast signal response to radiation and sensitivity close to the very edge of the detector. This work reports on the development of a novel semi-3D detector design that simplifies the 3D fabrication process, but conserves the necessary properties of the 3D detector design required in the LHC and in other imaging applications.
Resumo:
The dissertation deals with remote narrowband measurements of the electromagnetic radiation emitted by lightning flashes. A lightning flash consists of a number of sub-processes. The return stroke, which transfers electrical charge from the thundercloud to to the ground, is electromagnetically an impulsive wideband process; that is, it emits radiation at most frequencies in the electromagnetic spectrum, but its duration is only some tens of microseconds. Before and after the return stroke, multiple sub-processes redistribute electrical charges within the thundercloud. These sub-processes can last for tens to hundreds of milliseconds, many orders of magnitude longer than the return stroke. Each sub-process causes radiation with specific time-domain characteristics, having maxima at different frequencies. Thus, if the radiation is measured at a single narrow frequency band, it is difficult to identify the sub-processes, and some sub-processes can be missed altogether. However, narrowband detectors are simple to design and miniaturize. In particular, near the High Frequency band (High Frequency, 3 MHz to 30 MHz), ordinary shortwave radios can, in principle, be used as detectors. This dissertation utilizes a prototype detector which is essentially a handheld AM radio receiver. Measurements were made in Scandinavia, and several independent data sources were used to identify lightning sub-processes, as well as the distance to each individual flash. It is shown that multiple sub-processes radiate strongly near the HF band. The return stroke usually radiates intensely, but it cannot be reliably identified from the time-domain signal alone. This means that a narrowband measurement is best used to characterize the energy of the radiation integrated over the whole flash, without attempting to identify individual processes. The dissertation analyzes the conditions under which this integrated energy can be used to estimate the distance to the flash. It is shown that flash-by-flash variations are large, but the integrated energy is very sensitive to changes in the distance, dropping as approximately the inverse cube root of the distance. Flashes can, in principle, be detected at distances of more than 100 km, but since the ground conductivity can vary, ranging accuracy drops dramatically at distances larger than 20 km. These limitations mean that individual flashes cannot be ranged accurately using a single narrowband detector, and the useful range is limited to 30 kilometers at the most. Nevertheless, simple statistical corrections are developed, which enable an accurate estimate of the distance to the closest edge of an active storm cell, as well as the approach speed. The results of the dissertation could therefore have practical applications in real-time short-range lightning detection and warning systems.
Resumo:
Silicon particle detectors are used in several applications and will clearly require better hardness against particle radiation in the future large scale experiments than can be provided today. To achieve this goal, more irradiation studies with defect generating bombarding particles are needed. Protons can be considered as important bombarding species, although neutrons and electrons are perhaps the most widely used particles in such irradiation studies. Protons provide unique possibilities, as their defect production rates are clearly higher than those of neutrons and electrons, and, their damage creation in silicon is most similar to the that of pions. This thesis explores the development and testing of an irradiation facility that provides the cooling of the detector and on-line electrical characterisation, such as current-voltage (IV) and capacitance-voltage (CV) measurements. This irradiation facility, which employs a 5-MV tandem accelerator, appears to function well, but some disadvantageous limitations are related to MeV-proton irradiation of silicon particle detectors. Typically, detectors are in non-operational mode during irradiation (i.e., without the applied bias voltage). However, in real experiments the detectors are biased; the ionising proton generates electron-hole pairs, and a rise in rate of proton flux may cause the detector to breakdown. This limits the proton flux for the irradiation of biased detectors. In this work, it is shown that, if detectors are irradiated and kept operational, the electric field decreases the introduction rate of negative space-charges and current-related damage. The effects of various particles with different energies are scaled to each others by the non-ionising energy loss (NIEL) hypothesis. The type of defects induced by irradiation depends on the energy used, and this thesis also discusses the minimum proton energy required at which the NIEL-scaling is valid.
Resumo:
In this thesis a manifold learning method is applied to the problem of WLAN positioning and automatic radio map creation. Due to the nature of WLAN signal strength measurements, a signal map created from raw measurements results in non-linear distance relations between measurement points. These signal strength vectors reside in a high-dimensioned coordinate system. With the help of the so called Isomap-algorithm the dimensionality of this map can be reduced, and thus more easily processed. By embedding position-labeled strategic key points, we can automatically adjust the mapping to match the surveyed environment. The environment is thus learned in a semi-supervised way; gathering training points and embedding them in a two-dimensional manifold gives us a rough mapping of the measured environment. After a calibration phase, where the labeled key points in the training data are used to associate coordinates in the manifold representation with geographical locations, we can perform positioning using the adjusted map. This can be achieved through a traditional supervised learning process, which in our case is a simple nearest neighbors matching of a sampled signal strength vector. We deployed this system in two locations in the Kumpula campus in Helsinki, Finland. Results indicate that positioning based on the learned radio map can achieve good accuracy, especially in hallways or other areas in the environment where the WLAN signal is constrained by obstacles such as walls.