2 resultados para ROA
em Helda - Digital Repository of University of Helsinki
Resumo:
Detecting Earnings Management Using Neural Networks. Trying to balance between relevant and reliable accounting data, generally accepted accounting principles (GAAP) allow, to some extent, the company management to use their judgment and to make subjective assessments when preparing financial statements. The opportunistic use of the discretion in financial reporting is called earnings management. There have been a considerable number of suggestions of methods for detecting accrual based earnings management. A majority of these methods are based on linear regression. The problem with using linear regression is that a linear relationship between the dependent variable and the independent variables must be assumed. However, previous research has shown that the relationship between accruals and some of the explanatory variables, such as company performance, is non-linear. An alternative to linear regression, which can handle non-linear relationships, is neural networks. The type of neural network used in this study is the feed-forward back-propagation neural network. Three neural network-based models are compared with four commonly used linear regression-based earnings management detection models. All seven models are based on the earnings management detection model presented by Jones (1991). The performance of the models is assessed in three steps. First, a random data set of companies is used. Second, the discretionary accruals from the random data set are ranked according to six different variables. The discretionary accruals in the highest and lowest quartiles for these six variables are then compared. Third, a data set containing simulated earnings management is used. Both expense and revenue manipulation ranging between -5% and 5% of lagged total assets is simulated. Furthermore, two neural network-based models and two linear regression-based models are used with a data set containing financial statement data from 110 failed companies. Overall, the results show that the linear regression-based models, except for the model using a piecewise linear approach, produce biased estimates of discretionary accruals. The neural network-based model with the original Jones model variables and the neural network-based model augmented with ROA as an independent variable, however, perform well in all three steps. Especially in the second step, where the highest and lowest quartiles of ranked discretionary accruals are examined, the neural network-based model augmented with ROA as an independent variable outperforms the other models.
Resumo:
The new paradigm of connectedness and empowerment brought by the interactivity feature of the Web 2.0 has been challenging the traditional centralized performance of mainstream media. The corporation has been able to survive the strong winds by transforming itself into a global multimedia business network embedded in the network society. By establishing networks, e.g. networks of production and distribution, the global multimedia business network has been able to sight potential solutions by opening the doors to innovation in a decentralized and flexible manner. Under this emerging context of re-organization, traditional practices like sourcing need to be re- explained and that is precisely what this thesis attempts to tackle. Based on ICT and on the network society, the study seeks to explain within the Finnish context the particular case of Helsingin Sanomat (HS) and its relations with the youth news agency, Youth Voice Editorial Board (NÄT). In that sense, the study can be regarded as an explanatory embedded single case study, where HS is the principal unit of analysis and NÄT its embedded unit of analysis. The thesis was able to reach explanations through interrelated steps. First, it determined the role of ICT in HS’s sourcing practices. Then it mapped an overview of the HS’s sourcing relations and provided a context in which NÄT was located. And finally, it established conceptualized institutional relational data between HS and NÄT for their posterior measurement through social network analysis. The data set was collected via qualitative interviews addressed to online and offline editors of HS as well as interviews addressed to NÄT’s personnel. The study concluded that ICT’s interactivity and User Generated Content (UGC) are not sourcing tools as such but mechanism used by HS for getting ideas that could turn into potential news stories. However, when it comes to visual communication, some exemptions were found. The lack of official sources amidst the immediacy leads HS to rely on ICT’s interaction and UGC. More than meets the eye, ICT’s input into the sourcing practice may be more noticeable if the interaction and UGC is well organized and coordinated into proper and innovative networks of alternative content collaboration. Currently, HS performs this sourcing practice via two projects that differ, precisely, by the mode they are coordinated. The first project found, Omakaupunki, is coordinated internally by Sanoma Group’s owned media houses HS, Vartti and Metro. The second project found is coordinated externally. The external alternative sourcing network, as it was labeled, consists of three actors, namely HS, NÄT (professionals in charge) and the youth. This network is a balanced and complete triad in which the actors connect themselves in relations of feedback, recognition, creativity and filtering. However, as innovation is approached very reluctantly, this content collaboration is a laboratory of experiments; a ‘COLLABORATORY’.