7 resultados para RH

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1997 the Finnish Jabal Haroun Project (FJHP) has studied the ruins of the monastery and pilgrimage complex (Gr. oikos) of Aaron located on a plateau of the Mountain of Prophet Aaron, Jabal an-Nabi Harûn, ca. 5 km to the south-west of the UNESCO World Heritage site of Petra in Jordan. The state of conservation and the damaging processes affecting the stone structures of the site are studied in this M.A. thesis. The chapel was chosen as an example, as it represents the phasing and building materials of the entire site. The aim of this work is to act as a preliminary study with regards to the planning of long-term conservation at the site. The research is empirical in nature. The condition of the stones in the chapel walls was mapped using the Illustrated Glossary on Stone Deterioration, by the ICOMOS International Scientific Committee for Stone. This glossary combines several standards and systems of damage mapping used in the field. Climatic conditions (temperature and RH %) were monitored for one year (9/2005-8/2006) using a HOBO Microstation datalogger. The measurements were compared with contemporary measurements from the nearest weather station in Wadi Musa. Salts in the stones were studied by taking samples from the stone surfaces by scraping and with the “Paper Pulp”-method; with a poultice of wet cellulose fiber (Arbocel BC1000) and analyzing what main types of salts were to be found in the samples. The climatic conditions on the mountain were expected to be rapidly changing and to differ clearly from conditions in the neighboring areas. The rapid changes were confirmed, but the values did not differ as much as expected from those nearby: the 12 months monitored had average temperatures and were somewhat drier than average. Earlier research in the area has shown that the geological properties of the stone material influence its deterioration. The damage mapping showed clearly, that salts are also a major reason for stone weathering. The salt samples contained several salt combinations, whose behavior in the extremely unstable climatic conditions is difficult to predict. Detailed mapping and regular monitoring of especially the structures, that are going remain exposed, is recommended in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a severe mental disorder affecting 0.4-1% of the population worldwide. It is characterized by impairments in the perception of reality and by significant social or occupational dysfunction. The disorder is one of the major contributors to the global burden of diseases. Studies of twins, families, and adopted children point to strong genetic components for schizophrenia, but environmental factors also play a role in the pathogenesis of disease. Molecular genetic studies have identified several potential positional candidate genes. The strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1), but studies lack impressive consistency in the precise genetic regions and alleles implicated. We have studied the role of three potential candidate genes by genotyping 28 single nucleotide polymorphisms in the DNTBP1, NRG1, and AKT1 genes in a large schizophrenia family sample consisting of 441 families with 865 affected individuals from Finland. Our results do not support a major role for these genes in the pathogenesis of schizophrenia in Finland. We have previously identified a region on chromosome 5q21-34 as a susceptibility locus for schizophrenia in a Finnish family sample. Recently, two studies reported association between the γ-aminobutyric acid type A receptor cluster of genes in this region and one study showed suggestive evidence for association with another regional gene encoding clathrin interactor 1 (CLINT1, also called Epsin 4 and ENTH). To further address the significance of these genes under the linkage peak in the Finnish families, we genotyped SNPs of these genes, and observed statistically significant association of variants between GABRG2 and schizophrenia. Furthermore, these variants also seem to affect the functioning of the working memory. Fetal events and obstetric complications are associated with schizophrenia. Rh incompatibility has been implicated as a risk factor for schizophrenia in several epidemiological studies. We conducted a family-based candidate-gene study that assessed the role of maternal-fetal genotype incompatibility at the RhD locus in schizophrenia. There was significant evidence for an RhD maternal-fetal genotype incompatibility, and the risk ratio was estimated at 2.3. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia. In conclusion, in this thesis we found evidence that one GABA receptor subunit, GABRG2, is significantly associated with schizophrenia. Furthermore, it also seems to affect to the functioning of the working memory. In addition, an RhD maternal-fetal genotype incompatibility increases the risk of schizophrenia by two-fold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flax and hemp have traditionally been used mainly for textiles, but recently interest has also been focused on non-textile applications. Microbial quality throughout the whole processing chain of bast fibres has not previously been studied. This study concentrates on the microbial quality and possible microbial risks in the production chain of hemp and flax fibres and fibrous thermal insulations. In order to be able to utilize hemp and flax fibres, the bast fibres must be separated from the rest of the plant. Non-cellulosic components can be removed with various pretreatment processes, which are associated with a certain risk of microbial contamination. In this study enzymatic retting and steam explosion (STEX) were examined as pretreatment processes. On the basis of the results obtained in this study, the microbial contents on stalks of both plants studied increased at the end of the growing season and during the winter. However, by processing and mechanical separation it is possible to produce fibres containing less moulds and bacteria than the whole stem. Enzymatic treatment encouraged the growth of moulds in fibres. Steam explosion reduced the amount of moulds in fibres. Dry thermal treatment used in this study did not markedly reduce the amount of microbes. In this project an emission measurement chamber was developed which was suitable for measurements of emissions from both mat type and loose fill type insulations, and capable of interdisciplinary sampling. In this study, the highest amounts of fungal emissions were in the range of 10^3 10^5 cfu/m^3 from the flax and hemp insulations at 90% RH of air. The fungal emissions from stone wool, glass wool and recycled paper insulations were below 10^2 cfu/m^3 even at 90% RH. Equally low values were obtained from bast fibrous materials in lower humidities (at 30% and 80% RH of air). After drying of moulded insulations at 30% RH, the amounts of emitted moulds were in all cases higher compared to the emissions at 90% RH before drying. The most common fungi in bast fibres were Penicillium and Rhizopus. The widest variety of different fungi was in the untreated hemp and linseed fibres and in the commercial loose-fill flax insulation. Penicillium, Rhizopus and Paecilomyces were the most tolerant to steam explosion. According to the literature, the most common fungi in building materials and indoor air are Penicillium, Aspergillus and Cladosporium, which were all found in some of the bast fibre materials in this study. As organic materials, hemp and flax fibres contain high levels of nutrients for microbial growth. The amount of microbes can be controlled and somewhat decreased by the processing methods presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-energy malnutrition and mineral deficiencies are two of the three forms of nutritional deficiencies that affect most developing countries due to inadequate access to food and diets based on a sole crop. Common bean (Phaseolus vulgaris L.) is the staple crop of Nicaragua and it has the potential to improve the nutritional status of the poorest group of the nation. Its high content of both protein and nonhaem iron provides many nutrients, but inhibitors also may prevent absorption of iron and zinc by the human consumer. A proper production chain must be followed to ensure the best grain quality for the consumer. To achieve food security, both production and high nutritional content must be maintained. Four nationally important accessions of common bean, with different harvesting dates, were selected to be submitted to two treatments: to evaluate the impact of storage conditions on the end quality of the grain. The duration of the study was six months with sampling every six weeks, and the two treatments were controlled one stored at 40°C and 75 RH %, and the other was stored in in-situ conditions. Proximate and mineral composition was evaluated as well as tannin, phytate and bioavailability. Significant differences among different accessions were found, being the most significant in protein, Fe and Zn content, tannins and phytate. Protein values ranged from 21-23%. Iron content was 61-81 mg/kg but only 3-4% was bioavailable. Zinc content was 21-25 mg/kg and 10-12% was bioavailable. The concentration of phytate ranged from 8.6-9.6 mg/g while tannin values ranged within 37.7-43.8 mg/g. Storage at high temperatures was demonstrated to have an impact on certain nutritional compounds and proved detrimental to final grain quality. Soluble sugar content and tannin content decreased after six months in both storage conditions, IDF decreased in the in-situ and SDF in the stress. The iron content and bioavailability in INTA Biofortificado were not as outstanding as expected, so experiments should be conducted to compare its iron uptake and delivery with other cultivars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Koneellinen annosjakelu on kasvava lääkehuollon osa-alue, jossa lääkkeet pakataan koneellisesti pieniin annoskertakohtaisiin pusseihin kahden viikon erissä. Aikaisemmin lääkevalmisteiden soveltuvuutta koneelliseen annosjakeluun ei ole systemaattisesti tutkittu. Tutkimus tehtiin yhteistyössä Espoonlahden apteekin annosjakeluyksikön kanssa ja sen tavoitteena oli määrittää annosjakeluprosessin kannalta optimaaliset ominaisuudet annosjaeltavalle tabletille rikkoutumisten ja siirtymien vähentämiseksi. Rikkoutuminen on lääkevalmisteen murentumista, puolittumista tai muuta rikkoutumista annosjakelun aikana. Siirtymä on lääkevalmisteen jakelu väärään annospussiin. Prosentuaalisesti rikkoutumisia ja siirtymiä on jakelumäärästä hyvin vähän, mutta määrällisesti paljon ja koko ajan enemmän koneellisen annosjakelun yleistyessä. Rikkoutumiset ja siirtymät aiheuttavat paljon lisätyötä pussien korjaamisen takia, joten niiden määrää on pyrittävä vähentämään. Lisäksi tavoitteena oli selvittää lääkkeiden valmistajilta kysyttävissä olevat asiat lääkevalmisteiden ominaisuuksista ja säilyvyydestä, jotta voitaisiin päätellä valmisteen soveltuvuus koneelliseen annosjakeluun kirjallisen tiedon perusteella. Tutkimuksen tulosten perusteella rikkoutumisten ja siirtymien vähentämiseksi optimaalinen tablettivalmiste annosjakeluun on pienehkö tai keskisuuri, päällystetty, luja ja jakouurteeton ja optimaalinen ilman suhteellinen kosteustaso annosjakeluyksikön tuotantotiloissa olisi noin 30 – 40 %. Lääkkeiden valmistajilta kysyttäviä seikkoja ovat koon, päällysteen, murtolujuuden ja jakouurteen lisäksi valmisteen säilyvyys alkuperäispakkauksen ulkopuolella sekä valmisteen valo-, lämpö- ja kosteusherkkyys. Rikkoutumisten ja siirtymien lisäksi tutkittiin myös kosteusherkän asetyylisalisyylihappovalmisteen (Disperin 100 mg) säilyvyyttä 25 °C ja 60 % RH olosuhteissa, koska tuotantotilojen ilman kosteustasoa ei ole säädelty. Säilyvyystutkimuksen kesto oli neljä viikkoa. Se on riittävä, koska se on enimmäisaika, jonka tabletit ovat annosjakeluprosessin yhteydessä pois alkuperäispakkauksestaan ennen käyttöä. Tabletteja säilytettiin avoimessa alkuperäispakkauksessa (purkki), suljetussa alkuperäispakkauksessa, annosjakelukoneen kasetissa ja kahdessa erilaisessa annospussissa (uusi ja käytössä oleva materiaali). Tulosten mukaan annosjakelukoneen kasetti suojaa kosteudelta yhtä huonosti kuin avoin purkki. Uusi pussimateriaali sen sijaan suojaa kosteudelta paremmin kuin tällä hetkellä käytössä oleva materiaali. Raman -spektroskopiamittausten perusteella asetyylisalisyylihappotableteissa ei ehdi neljän viikon seurannan aikana tapahtua asetyylisalisyylihapon hajoamista salisyylihapoksi. Kosteus heikentää tablettien murtolujuutta, mikä saattaa aiheuttaa enemmän rikkoutumisia. Kosteustaso olisi hyvä olla säädettävissä vakioksi tuotantotiloissa tai purkaa tabletit kasetteihin mahdollisimman lähellä jakelua rikkoutumisten ehkäisemiseksi, etenkin ilman kosteustason ollessa korkea. Lisäksi tutkittiin lääkevalmisteen lämpöherkkyyttä koska annosjakelukoneen saumauslaite altistaa annospussit noin 75 °C lämmölle, jos annosjakelukone pysäytetään kesken työn. Tutkimus tehtiin XRPD:llä, jolla voidaan säätää näytteen lämpötilaa. Lämpöherkkyystutkimusten perusteella 75 °C lämpö ei ehdi tunnin aikana aiheuttaa muutoksia karbamatsepiinitabletissa (Neurotol 200 mg). Tuloksista selvisi, että tutkitun valmisteen sisältämä karbamatsepiini ei kuitenkaan ole lämpöherkin muoto, joten muita lämpöherkkiä lääkevalmisteita tulisi tutkia lisätiedon saamiseksi lämmön vaikutuksista.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New chemical entities with unfavorable water solubility properties are continuously emerging in drug discovery. Without pharmaceutical manipulations inefficient concentrations of these drugs in the systemic circulation are probable. Typically, in order to be absorbed from the gastrointestinal tract, the drug has to be dissolved. Several methods have been developed to improve the dissolution of poorly soluble drugs. In this study, the applicability of different types of mesoporous (pore diameters between 2 and 50 nm) silicon- and silica-based materials as pharmaceutical carriers for poorly water soluble drugs was evaluated. Thermally oxidized and carbonized mesoporous silicon materials, ordered mesoporous silicas MCM-41 and SBA-15, and non-treated mesoporous silicon and silica gel were assessed in the experiments. The characteristic properties of these materials are the narrow pore diameters and the large surface areas up to over 900 m²/g. Loading of poorly water soluble drugs into these pores restricts their crystallization, and thus, improves drug dissolution from the materials as compared to the bulk drug molecules. In addition, the wide surface area provides possibilities for interactions between the loaded substance and the carrier particle, allowing the stabilization of the system. Ibuprofen, indomethacin and furosemide were selected as poorly soluble model drugs in this study. Their solubilities are strongly pH-dependent and the poorest (< 100 µg/ml) at low pH values. The pharmaceutical performance of the studied materials was evaluated by several methods. In this work, drug loading was performed successfully using rotavapor and fluid bed equipment in a larger scale and in a more efficient manner than with the commonly used immersion methods. It was shown that several carrier particle properties, in particular the pore diameter, affect the loading efficiency (typically ~25-40 w-%) and the release rate of the drug from the mesoporous carriers. A wide pore diameter provided easier loading and faster release of the drug. The ordering and length of the pores also affected the efficiency of the drug diffusion. However, these properties can also compensate the effects of each other. The surface treatment of porous silicon was important in stabilizing the system, as the non-treated mesoporous silicon was easily oxidized at room temperature. Different surface chemical treatments changed the hydrophilicity of the porous silicon materials and also the potential interactions between the loaded drug and the particle, which further affected the drug release properties. In all of the studies, it was demonstrated that loading into mesoporous silicon and silica materials improved the dissolution of the poorly soluble drugs as compared to the corresponding bulk compounds (e.g. after 30 min ~2-7 times more drug was dissolved depending on the materials). The release profile of the loaded substances remained similar also after 3 months of storage at 30°C/56% RH. The thermally carbonized mesoporous silicon did not compromise the Caco-2 monolayer integrity in the permeation studies and improved drug permeability was observed. The loaded mesoporous silica materials were also successfully compressed into tablets without compromising their characteristic structural and drug releasing properties. The results of this research indicated that mesoporous silicon/silica-based materials are promising materials to improve the dissolution of poorly water soluble drugs. Their feasibility in pharmaceutical laboratory scale processes was also confirmed in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this research project was to understand the steps of the retrotransposon BARE (BArley REtrotransposon) life cycle, from regulation of transcription to Virus-Like Particle (VLP) formation and ultimate integration back into the genome. Our study concentrates mainly on BARE1 transcriptional regulation because transcription is the crucial first step in the retrotransposon life cycle. The BARE element is a Class I LTR (Long Terminal Repeat) retrotransposon belonging to the Copia superfamily and was originally isolated in our research group. The LTR retrotransposons are transcribed from promoters in the LTRs and encode proteins for packaging of their transcripts, the reverse transcription of the transcripts into cDNA, and integration of the cDNA back into the genome. BARE1 is translated as a single polyprotein and cleaved into the capsid protein (GAG), integrase (IN), and reverse transcriptase-RNaseH (RT-RH) by the integral aspartic proteinase (AP). The BARE retrotransposon family comprises more than 104 copies in the barley (Hordeum vulgare) genome. The element is bound by long terminal repeats (LTRs, 1829 bp) containing promoters required for replication, signals for RNA processing, and motifs necessary for the integration of the cDNA. Members of the BARE1 subfamily are transcribed, translated, and form virus-like particles. Several basic questions concerning transcription are explored in the thesis: BARE1 transcription control, promoter choice in different barley tissues, start and termination sites for BARE transcripts, and BARE1 transcript polyadenylation (I). Polyadenylation is an important step during mRNA maturation, and determines its stability and translatability among other characteristics. Our work has found a novel way used by BARE1 to make extra GAG protein, which is critical for VLP formation. The discovery that BARE1 uses one RNA population for protein synthesis and another RNA population for making cDNA has established the most important step of the BARE1 life cycle (III). The relationship between BARE1 and BARE2 has been investigated. Besides BARE, we have examined the retrotransposon Cassandra (II), which uses a very different transcriptional mechanism and a fully parasitic life cycle. In general, this work is focused on BARE1 promoter activity, transcriptional regulation including differential promoter usage and RNA pools, extra GAG protein production and VLP formation. The results of this study give new insights into transcription regulation of LTR retrotransposons.