2 resultados para RELAYS
em Helda - Digital Repository of University of Helsinki
Resumo:
Studies in both vertebrates and invertebrates have identified proteins of the Hedgehog (Hh) family of secreted signaling molecules as key organizers of tissue patterning. Initially discovered in Drosophila in 1992, Hh family members have been discovered in animals with body plans as diverse as those of mammals, insects and echinoderms. In humans three related Hh genes have been identified: Sonic, Indian and Desert hedgehog (Shh, Ihh and Dhh). Transduction of the Hh signal to the cytoplasm utilizes an unusual mechanism involving consecutive repressive interactions between Hh and its receptor components, Patched (Ptc) and Smoothened (Smo). Several cytoplasmic proteins involved in Hh signal transduction are known in Drosophila, but mammalian homologs are known only for the Cubitus interruptus (Ci) transcription factor (GLI(1-3)) and for the Ci/GLI-associated protein, Suppressor of Fused (Su(fu)). In this study I analyzed the mechanisms of how the Hh receptor Ptc regulates the signal transducer Smo, and how Smo relays the Shh signal from the cell surface to the cytoplasm ultimately leading to the activation of GLI transcription factors. In Drosophila, the kinesin-like protein Costal2 (Cos2) is required for suppression of Hh target gene expression in the absence of ligand, and loss of Cos2 causes embryonic lethality. Cos2 acts by bridging Smo to the Ci. Another protein, Su(Fu) exerts a weak suppressive influence on Ci activity and loss of Su(Fu) causes subtle changes in Drosophila wing pattern. This study revealed that domains in Smo that are critical for Cos2 binding in Drosophila are dispensable for mammalian Smo function. Furthermore, by analyzing the function of Su(Fu) and the closest mouse homologs of Cos2 by protein overexpression and RNA interference I found that inhibition of the Hh response pathway in the absence of ligand does not require Cos2 activity, but instead critically depends on the activity of Su(Fu). These results indicate that a major change in the mechanism of action of a conserved signaling pathway occurred during evolution, probably through phenotypic drift made possible by the existence in some species of two parallel pathways acting between the Hh receptor and the Ci/GLI transcription factors. In a second approach to unravel Hh signaling we cloned > 90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase-activity deficient mutants. Using this kinome resource as a screening tool, two kinases, MAP3K10 and DYRK2 were found to regulate Shh signaling. DYRK2 directly phosphorylated and induced the proteasome dependent degradation of the key Hh-pathway regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2.
Resumo:
The type A lantibiotic nisin produced by several Lactococcus lactis strains, and one Streptococcus uberis strainis a small antimicrobial peptide that inhibits the growth of a wide range of gram-positive bacteria, such as Bacillus, Clostridium, Listeria and Staphylococcus species. It is nontoxic to humans and used as a food preservative (E234) in more than 50 countries including the EU, the USA, and China. National legislations concerning maximum addition levels of nisin in different foods vary greatly. Therefore, there is a demand for non-laborious and sensitive methods to identify and quantify nisin reliably from different food matrices. The horizontal inhibition assay, based on the inhibitory effect of nisin to Micrococcus luteus is the base for most quantification methods developed so far. However, the sensitivity and accuracy of the agar diffusion method is affected by several parameters. Immunological tests have also been described. Taken into account the sensitivity of immunological methods to interfering substances within sample matrices, and possible cross-reactivities with lantibiotics structurally close to nisin, their usefulness for nisin detection from food samples remains limited. The proteins responsible for nisin biosynthesis, and producer self-immunity are encoded by genes arranged into two inducible operons, nisA/Z/QBTCIPRK and nisFEG, which also contain internal, constitutive promoters PnisI and PnisR. The transmembrane histidine kinase NisK and the response regulator NisR form a two-component signal transduction system, in which NisK autophosphorylates after exposure to extra cellular nisin, and subsequently transfers the phosphate to NisR. The phosphorylated NisR then relays the signal downstream by binding to two regulated promoters in the nisin gene cluster, i.e the nisA/Z/Qand the nisF promoters, thus activating transcription of the structural gene nisA/Z/Q and the downstream genes nisBTCIPRK from the nisA/Z/Q promoter, and the genes nisFEG from the nisF promoter. In this work two novel and highly sensitive nisin bioassays were developed. Both of these quantification methods were based on NisRK mediated, nisin induced Green Fluorescent Protein (GFP) fluorescence. The suitabilities of these assays for quantifica¬tion of nisin from food samples were evaluated in several food matrices. These bioassays had nisin sensitivities in the nanogram or picogram levels. In addition, shelf life of nisin in cooked sausages and retainment of the induction activity of nisin in intestinal chyme (intestinal content) was assessed.