12 resultados para Prolactin hormone
em Helda - Digital Repository of University of Helsinki
Resumo:
Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.
Resumo:
Identification of genes predisposing to tumor syndromes has raised general awareness of tumorigenesis. Genetic testing of tumor susceptibility genes aids the recognition of individuals at increased risk of tumors. Identification of novel predisposing genes enables further studies concerning the classification of potential associated tumors and the definition of target patient group. Pituitary adenomas are common, benign neoplasms accounting for approximately 15% of all intracranial tumors. Accurate incidence estimation is challenging since a great portion of these adenomas are small and asymptomatic. Clinically relevant adenomas, that cause symptoms due to the expansion of the cell mass or the over-secretion of normally produced hormones, occur in approximately one of 1 000 individuals. Although the majority of pituitary adenomas are sporadic, a minority occur as components of familial syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 syndrome is caused by germ-line mutations in the MEN1 gene, whereas most of the CNC patients carry the mutated protein kinase A (PKA) regulatory subunit-1-α (PRKAR1A) gene. Recently, other conditions predisposing to endocrine tumors have been identified: Pituitary Adenoma Predisposition (PAP) and MEN type 4 (MEN4). PAP was originally identified in a genetically homogeneous Finnish population. In a population based cohort from Northern Finland, aryl hydrocarbon receptor-interacting protein (AIP) gene mutations were found in 16% of all patients diagnosed with growth hormone (GH) producing pituitary adenoma, and in 40% of the subset of patients who were diagnosed under the age of 35 years. Since AIP mutations were originally described in a defined, homogeneous population from Northern Finland, it was relevant to study whether mutations also occur in more heterogeneous populations. In patient cohorts with different ethnic origins and variable clinical phenotypes, germ-line AIP mutations were detectable at low frequencies (range 0.8-7.4%). AIP mutation-positive patients were often diagnosed with a GH-producing adenoma at a young age, and usually had no family history of endocrine tumors. The low frequency of AIP mutations in randomly selected patients, and the lack of any family history of pituitary adenomas create a challenge for the identification of PAP patients. Our preliminary study suggests that AIP immunohistochemistry may serve as a pre-screening tool to distinguish between the AIP mutation-negative and the mutation-positive tumors. Tumors of various endocrine glands are components of MEN1 and CNC syndromes. Somatic MEN1 and PRKAR1A mutations in sporadic pituitary adenomas are rare, but occur in some of the other tumors related to these syndromes. The role of AIP mutations in endocrine neoplasia was studied and our results indicated that somatic AIP mutations are rare or non-existent in sporadic tumors of endocrine glands (0 of 111). Furthermore, germ-line AIP mutations in prolactin producing adenomas (2 of 9) confirmed the role of this pituitary tumor type in the PAP phenotype. Thyroid disorders are common in the general population, and the majority of them are sporadic. Interestingly, it has been suggested that thyroid disorders might be more common in PAP families. For this reason we studied germ-line AIP mutations in 93 index cases from familial non-medullary thyroid cancer (NMTC) families. The underlying gene or genes for familial NMTC have not been identified yet. None of the patients had any potentially pathogenic AIP mutation. This suggests that AIP is unlikely to play a role in familial NMTCs. A novel multiple endocrine syndrome was originally described in rats with phenotypic features of human MEN type 1 and 2. Germ-line mutations of cyclin-dependent kinase inhibitor 1B (CDKN1B also known as p27Kip1) gene were reported later in these rats and a germ-line mutation was also identified in one human family with MEN1-like phenotype (later named MEN4). To confirm the importance of this gene’s mutations in humans, we performed a mutation screening in MEN-like patients and in patients with pituitary adenoma. Our results indicate that CDKN1B/p27Kip1 mutations appear in a small portion of MEN1-like patients (one of 36), and that such mutations are rare or non-existent in both familial (0 of 19) and sporadic pituitary adenoma patients (0 of 50). In conclusion, this work strengthens the tumor susceptibility role of AIP and CDKN1B/p27Kip1 in endocrine neoplasia. Clarifying the PAP phenotype facilitates the identification of potential AIP mutation carriers. Genetic counseling can be offered to the relatives and follow-up of the mutation carriers can be organized, hence an earlier diagnosis is feasible.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) family ligands: GDNF, neurturin, persephin and artemin, signal through a receptor tyrosine kinase Ret by binding first to a co-receptor (GFRα1-4) that is attached to the plasma membrane. The GDNF family factors can support the survival of various peripheral and central neuronal populations and have important functions also outside the nervous system, especially in kidney development. Activating mutations in the RET gene cause tumours in neuroendocrine cells, whereas inactivating mutations in RET are found in patients with Hirschsprung s disease (HSCR) characterized by loss of ganglionic cells along the intestine. The aim of this study was to examine the in vivo functions of neurturin receptor GFRα2 and persephin receptor GFRα4 using knockout (KO) mice. Mice lacking GFRα2 grow poorly after weaning and have deficits in parasympathetic and enteric innervation. This study shows that impaired secretion of the salivary glands and exocrine pancreas contribute to growth retardation in GFRα2-KO mice. These mice have a reduced number of intrapancreatic neurons and decreased cholinergic innervation of the exocrine pancreas as well as reduced excitatory fibres in the myenteric plexus of the small intestine. This study also demonstrates that GFRα2-mediated Ret signalling is required for target innervation and maintenance of soma size of sympathetic cholinergic neurons and sensory nociceptive IB4-binding neurons. Furthermore, lack of GFRα2 in mice results in deficient perception of temperatures above and below thermoneutrality and in attenuated inflammatory pain response. GFRα4 is co-expressed with Ret predominantly in calcitonin-producing thyroid C-cells in the mouse. In this study GFRα4-deficient mice were generated. The mice show no gross developmental deficits and have a normal number of C-cells. However, young but not adult mice lacking GFRα4 have a lower production of calcitonin in thyroid tissue and consequently, an increased bone formation rate. Thus, GFRα4/Ret signalling may regulate calcitonin production. In conclusion, this study reveals that GFRα2/Ret signalling is crucial for the development and function of specific components of the peripheral nervous system and that GFRα4-mediated Ret signalling is required for controlling transmitter synthesis in thyroid C-cells.
Resumo:
Thyroid hormone (TH) plays an important role in maintaining a homeostasis in all the cells of our body. It also has significant cardiovascular effects, and abnormalities of its concentration can cause cardiovascular disease and even morbidity. Especially development of heart failure has been connected to low levels of thyroid hormone. A decrease in TH levels or TH-receptor binding adversely effects cardiac function. Although, this occurs in part through alterations in excitation-contraction and transport proteins, recent data from our laboratory indicate that TH also mediates changes in myocardial energy metabolism. Thyroid dysfunction may limit the heart s ability to shift substrate pathways and provide adequate energy supply during stress responses. Our goals of these studies were to determine substrate oxidation pattern in systemic and cardiac specific hypothyroidism at rest and at higher rates of oxygen demand. Additionally we investigated the TH mediated mechanisms in myocardial substrate selection and established the metabolic phenotype caused by a thyroid receptor dysfunction. We measured cardiac metabolism in an isolated heart model using 13Carbon isotopomer analyses with MR spectroscopy to determine function, oxygen consumption, fluxes and fractional contribution of acetyl-CoA to the citric acid cycle (CAC). Molecular pathways for changes in cardiac function and substrate shifts occurring during stress through thyroid receptor abnormalities were determined by protein analyses. Our results show that TH modifies substrate selection through nuclear-mediated and rapid posttranscriptional mechanisms. It modifies substrate selection differentially at rest and at higher rates of oxygen demand. Chronic TH deficiency depresses total CAC flux and selectively fatty acid flux, whereas acute TH supplementation decreases lactate oxidation. Insertion of a dominant negative thyroid receptor (Δ337T) alters metabolic phenotype and contractive efficiency in heart. The capability of the Δ337T heart to increase carbohydrate oxidation in response to stress seems to be limited. These studies provided a clearer understanding of the TH role in heart disease and shed light to identification of the molecular mechanisms that will facilitate in finding targets for heart failure prevention and treatment.
Resumo:
Vasomotor hot flushes are complained of by approximately 75% of postmenopausal women, but their frequency and severity show great individual variation. Hot flushes have been present in women attending observational studies showing cardiovascular benefit associated with hormone therapy use, whereas they have been absent or very mild in randomized hormone therapy trials showing cardiovascular harm. Therefore, if hot flushes are a factor connected with vascular health, they could perhaps be one explanation for the divergence of cardiovascular data in observational versus randomized studies. For the present study 150 healthy, recently postmenopausal women showing a large variation in hot flushes were studied in regard to cardiovascular health by way of pulse wave analysis, ambulatory blood pressure and several biochemical vascular markers. In addition, the possible impact of hot flushes on outcomes of hormone therapy was studied. This study shows that women with severe hot flushes exhibit a greater vasodilatory reactivity as assessed by pulse wave analysis than do women without vasomotor symptoms. This can be seen as a hot flush-related vascular benefit. Although severe night-time hot flushes seem to be accompanied by transient increases in blood pressure and heart rate, the diurnal blood pressure and heart rate profiles show no significant differences between women without and with mild, moderate or severe hot flushes. The levels of vascular markers, such as lipids, lipoproteins, C-reactive protein and sex hormone-binding globulin show no association with hot flush status. In the 6-month hormone therapy trial the women were classified as having either tolerable or intolerable hot flushes. These groups were treated in a randomized order with transdermal estradiol gel, oral estradiol alone or in combination with medroxyprogesterone acetate, or with placebo. In women with only tolerable hot flushes, oral estradiol leads to a reduced vasodilatory response and increases in 24-hour and daytime blood pressures as compared to women with intolerable hot flushes receiving the same therapy. No such effects were observed with the other treatment regimes or in women with intolerable hot flushes. The responses of vascular biomarkers to hormone therapy are unaffected by hot flush status. In conclusion, hot flush status contributes to cardiovascular health before and during hormone therapy. Severe hot flushes are associated with an increased vasodilatory, and thus, a beneficial vascular status. Oral estradiol leads to vasoconstrictive changes and increases in blood pressure, and thus to possible vascular harm, but only in women whose hot flushes are so mild that they would probably not lead to the initiation of hormone therapy in clinical practice. Healthy, recently postmenopausal women with moderate to severe hot flushes should be given the opportunity to use hormone therapy alleviate hot flushes, and if estrogen is prescribed for indications other than for the control of hot flushes, transdermal route of administration should be favored.
Resumo:
Thirty percent of 70-year-old women have osteoporosis; after age of 80 its prevalence is up to 70%. Postmenopausal women with osteoporosis seem to be at an increased risk for cardiovascular events, and deterioration of oral health, as shown by attachment loss of teeth, which is proportional to the severity of osteoporosis. Osteoporosis can be treated with many different medication, e.g. estrogen and alendronate. We randomized 90 elderly osteoporotic women (65-80 years of age) to receive hormone therapy (HT)(2mg E2+NETA), 10mg alendronate, and their combination for two years and compared their effects on bone mineral density (BMD) and turnover, two surrogate markers of the risk of cardiovascular diseases, C-reactive protein (CRP) and E-selectin, as well as oral health. The effect of HT on health-related quality of life (HRQoL) was studied in the population-based cohort of 1663 postmenopausal women (mean age 68 yr) (585 estrogen users and 1078 non-users). BMD was measured with dual-energy X-ray absorptiometry (DXA) at 0, 12 and 24 months. Urinary N-telopeptide (NTX) of type I collagen, a marker of bone resorption, and serum aminoterminal propeptide of human type I procollagen (PINP), a marker of bone formation, were measured every six months of treatment. Serum CRP and E-selectin, were measured at 0, 6, and 12 months. Dental, and periodontal conditions, and gingival crevicular fluid (GCF) matrix metalloproteinase (MMP)-8 levels were studied to evaluate the oral health status and for the mouth symptoms a structured questionnaire was used. The HRQoL was measured with 15D questionnaire. Lumbar spine BMD increased similarly in all treatment groups (6.8-8.4% and 9.1-11.2%). Only HT increased femoral neck BMD at both 12 (4.9%) and 24 months (5.8%), at the latter time point the HT group differed significantly from the other groups. HT reduced bone marker levels of NTX and PINP significantly less than other two groups.Oral HT significantly increased serum CRP level by 76.5% at 6 and by 47.1% (NS) at 12 months, and decreased serum E-selectin level by 24.3% and 30.0%. Alendronate had no effect on these surrogate markers. Alendronate caused a decrease in the resting salivary flow rate and tended to increase GCF MMP-8 levels. Otherwise, there was no effect on the parameters of oral health. HT improved the HRQoL of elderly women significantly on the dimensions of usual activities, vitality and sexual activity, but the overall improvement in HRQoL was neither statistically significant nor clinically important. In conclusion, bisphosphonates might be the first option to start the treatment of postmenopausal osteoporosis in the old age.
Resumo:
Since national differences exist in genes, environment, diet and life habits and also in the use of postmenopausal hormone therapy (HT), the associations between different hormone therapies and the risk for breast cancer were studied among Finnish postmenopausal women. All Finnish women over 50 years of age who used HT were identified from the national medical reimbursement register, established in 1994, and followed up for breast cancer incidence (n= 8,382 cases) until 2005 with the aid of the Finnish Cancer Registry. The risk for breast cancer in HT users was compared to that in the general female population of the same age. Among women using oral or transdermal estradiol alone (ET) (n = 110,984) during the study period 1994-2002 the standardized incidence ratio (SIR) for breast cancer in users for < 5 years was 0.93 (95% confidence interval (CI) 0.80–1.04), and in users for ≥ 5 years 1.44 (1.29–1.59). This therapy was associated with similar rises in ductal and lobular types of breast cancer. Both localized stage (1.45; 1.26–1.66) and cancers spread to regional nodes (1.35; 1.09–1.65) were associated with the use of systemic ET. Oral estriol or vaginal estrogens were not accompanied with a risk for breast cancer. The use of estrogen-progestagen therapy (EPT) in the study period 1994-2005 (n= 221,551) was accompanied with an increased incidence of breast cancer (1.31;1.20-1.42) among women using oral or transdermal EPT for 3-5 years, and the incidence increased along with the increasing duration of exposure (≥10 years, 2.07;1.84-2.30). Continuous EPT entailed a significantly higher (2.44; 2.17-2.72) breast cancer incidence compared to sequential EPT (1.78; 1.64-1.90) after 5 years of use. The use of norethisterone acetate (NETA) as a supplement to estradiol was accompanied with a higher incidence of breast cancer after 5 years of use (2.03; 1.88-2.18) than that of medroxyprogesterone acetate (MPA) (1.64; 1.49-1.79). The SIR for the lobular type of breast cancer was increased within 3 years of EPT exposure (1.35; 1.18-1.53), and the incidence of the lobular type of breast cancer (2.93; 2.33-3.64) was significantly higher than that of the ductal type (1.92; 1.67-2.18) after 10 years of exposure. To control for some confounding factors, two case control studies were performed. All Finnish women between the ages of 50-62 in 1995-2007 and diagnosed with a first invasive breast cancer (n= 9,956) were identified from the Finnish Cancer Registry, and 3 controls of similar age (n=29,868) without breast cancer were retrieved from the Finnish national population registry. Subjects were linked to the medical reimbursement register for defining the HT use. The use of ET was not associated with an increased risk for breast cancer (1.00; 0.92-1.08). Neither was progestagen-only therapy used less than 3 years. However, the use of tibolone was associated with an elevated risk for breast cancer (1.39; 1.07-1.81). The case-control study confirmed the results of EPT regarding sequential vs. continuous use of progestagen, including progestagen released continuously by an intrauterine device; the increased risk was seen already within 3 years of use (1.65;1.32-2.07). The dose of NETA was not a determinant as regards the breast cancer risk. Both systemic ET, and EPT are associated with an elevation in the risk for breast cancer. These risks resemble to a large extent those seen in several other countries. The use of an intrauterine system alone or as a complement to systemic estradiol is also associated with a breast cancer risk. These data emphasize the need for detailed information to women who are considering starting the use of HT.
Resumo:
Serum parathyroid hormone (PTH) and vitamin D are the major regulators of extracellular calcium homeostasis. The inverse association between PTH and vitamin D and the common age-related elevation of the PTH concentration are well known phenomena. However, the confounding or modifying factors of this relationship and their impact on the response of PTH levels to vitamin D supplementation need further investigation. Clinical conditions such as primary hyperparathyroidism (PHPT), renal failure and vitamin D deficiency, characterized by an elevation of the PTH concentration, have been associated with impaired long-term health outcomes. Curative treatments for these conditions have also been shown to decreases PTH concentration and attenuate some of the adverse health effects. In PHPT it has also been commonly held that hypercalcaemia, the other hallmark of the disease, is the key mediator of the adverse health outcomes. In chronic kidney disease the systemic vascular disease has been proposed to have the most important impact on general health. Some evidence also indicates that vitamin D may have significant extraskeletal actions. However, the frank elevation of PTH concentration seen in advanced PHPT and in end-stage renal failure have also been suggested to be at least partly causally related to an increased risk of death as well as cognitive dysfunction. However, the exact mechanisms have remained unclear. Furthermore, the predictive value of elevated PTH in unselected older populations has been less well studied. The studies presented in this thesis investigated the impact of age and mobility on the responses of PTH levels to vitamin D deficiency and supplementation. Furthermore, the predictive value of PTH for long-term survival and cognitive decline was addressed in an unselected population of older people. The hypothesis was that age and chronic immobility are related to a persistently blunted elevation of PTH concentration, even in the presence of chronic vitamin D deficiency, and to attenuated responses of PTH to vitamin D supplementation. It was also further hypothesized that a slightly elevated or even high-normal PTH concentration is an independent indicator of an increased risk of death and cognitive decline in the general aged population. The data of this thesis are based on three samples: a meta-analysis of published vitamin D supplementation trials, a randomized placebo controlled six-month vitamin D supplementation trial, and a longitudinal prospective cohort study on a general aged population. Based on a PubMed search, a meta-analysis of 52 clinical trials with 6 290 adult participants was performed to evaluate the impact of age and immobility on the responses of PTH to 25-OHD levels and vitamin D supplementation. A total of 218 chronically immobile, very old inpatients were also enrolled into a vitamin D supplementation trial. Mortality data for these patients was also collected after a two-year follow-up. Finally, data from the Helsinki Aging Study, which followed three random age cohorts (75, 80 and 85 years) until death in almost all subjects, was used to evaluate the predictive value of PTH for long-term survival and cognitive decline. This series of studies demonstrated that in older people without overt renal failure or severe hypercalcaemia, serum 25-OHD and PTH were closely associated, but this relationship was also affected by age and immobility. Furthermore, a substantial proportion of old chronically bedridden patients did not respond to vitamin D deficiency by elevating PTH, and the effect of a high-dose (1200 IU/d) six-month cholecalciferol supplementation on the PTH concentration was minor. This study demonstrated longitudinally for the first time that the blunted PTH also persisted over time. Even a subtle elevation of PTH to high-normal levels predicted impaired long-term health outcomes. Slightly elevated PTH concentrations indicated an increased risk of clinically significant cognitive decline and death during the last years of life in a general aged population. This association was also independent of serum ionized calcium (Ca2+) and the estimated glomerular filtration rate (GFR). A slightly elevated PTH also indicated impaired two-year survival during the terminal years of frail elderly subjects independently of Ca2+, GFR, and of 25-OHD levels. The interplay between PTH and vitamin D in the regulation of calcium homeostasis is more complex than has been generally considered. In addition to muskuloskeletal health parathyroid hormone is also related to the maintenance of other important domains of health in old age. Higher PTH concentrations, even within conventional laboratory reference ranges, seem to be an independent indicator of an increased risk of all-cause and of cardiovascular mortality, independently of established cardiovascular risk factors, disturbances in mineral metabolism, and renal failure. Limited and inconsistent evidence supports the role of vitamin D deficiency-related lack of neuroprotective effects over the causal association between PTH and impaired cognitive functions. However, the causality of these associations remains unclear. The clinical implications of the observed relationships remain to be elucidated by future studies interfering with PTH concentrations, especially by long-term interventions to reduce PTH.