34 resultados para Probabilistic Finite Automata

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pappret conceptualizes parsning med Constraint Grammar på ett nytt sätt som en process med två viktiga representationer. En representation innehåller lokala tvetydighet och den andra sammanfattar egenskaperna hos den lokala tvetydighet klasser. Båda representationer manipuleras med ren finite-state metoder, men deras samtrafik är en ad hoc -tillämpning av rationella potensserier. Den nya tolkningen av parsning systemet har flera praktiska fördelar, bland annat det inåt deterministiska sättet att beräkna, representera och räkna om alla potentiella tillämpningar av reglerna i meningen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are numerous formats for writing spellcheckers for open-source systems and there are many descriptions for languages written in these formats. Similarly, for word hyphenation by computer there are TEX rules for many languages. In this paper we demonstrate a method for converting these spell-checking lexicons and hyphenation rule sets into finite-state automata, and present a new finite-state based system for writer’s tools used in current open-source software such as Firefox, OpenOffice.org and enchant via the spell-checking library voikko.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is a theoretical study of finite-state based grammars used in natural language processing. The study is concerned with certain varieties of finite-state intersection grammars (FSIG) whose parsers define regular relations between surface strings and annotated surface strings. The study focuses on the following three aspects of FSIGs: (i) Computational complexity of grammars under limiting parameters In the study, the computational complexity in practical natural language processing is approached through performance-motivated parameters on structural complexity. Each parameter splits some grammars in the Chomsky hierarchy into an infinite set of subset approximations. When the approximations are regular, they seem to fall into the logarithmic-time hierarchyand the dot-depth hierarchy of star-free regular languages. This theoretical result is important and possibly relevant to grammar induction. (ii) Linguistically applicable structural representations Related to the linguistically applicable representations of syntactic entities, the study contains new bracketing schemes that cope with dependency links, left- and right branching, crossing dependencies and spurious ambiguity. New grammar representations that resemble the Chomsky-Schützenberger representation of context-free languages are presented in the study, and they include, in particular, representations for mildly context-sensitive non-projective dependency grammars whose performance-motivated approximations are linear time parseable. (iii) Compilation and simplification of linguistic constraints Efficient compilation methods for certain regular operations such as generalized restriction are presented. These include an elegant algorithm that has already been adopted as the approach in a proprietary finite-state tool. In addition to the compilation methods, an approach to on-the-fly simplifications of finite-state representations for parse forests is sketched. These findings are tightly coupled with each other under the theme of locality. I argue that the findings help us to develop better, linguistically oriented formalisms for finite-state parsing and to develop more efficient parsers for natural language processing. Avainsanat: syntactic parsing, finite-state automata, dependency grammar, first-order logic, linguistic performance, star-free regular approximations, mildly context-sensitive grammars

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My dissertation is a corpus-based study of non-finite constructions in Old English (OE). It revisits the question of Latin influence on the OE syntax, offering a new evaluation of syntactic interference between Latin and OE, and, more generally, of the contact situation in the OE period, drawing on methods used in studying grammaticalization and language contact. I address three non-finite constructions: absolute participial construction, accusative-and-infinitive construction, and nominative-and-infinitive construction, exemplified respectively in present-day English as - She looked like a pixie sometimes, her eyes darting here and there, forever watchful (BNC CCM 98); - My first acquaintance with her was when I heard her sing (BNC CFY 2215); - Charles the Bald was said to resemble his grandfather physically (BNC HPT 175). This study compares data from translated texts against the background of original OE writings, establishing dependencies and differences between the two. Although the contrastive analysis of source and target texts is one of the major methods employed in the study, translation and translation strategies as such are only my secondary foci. The emphasis is rather on what source/target comparison can tell us about the OE non-finite syntax and the typological differences between Latin and OE in this domain, and on whether contact-induced change can originate in translation. In terms of theoretical framework, I have adopted functional-typological approach, which rests on the principles of iconicity and event integration, and to the best of my knowledge, has not been applied systematically to OE non-finite constructions. Therefore one more aim of the dissertation is to test this framework and to see how OE fits into the cross-linguistic picture of non-finites. My research corpus consists of two samples: 1) written OE closely dependent on the Latin originals, based on editions of two gloss texts, five translations, and Latin originals of these texts, representing four text types: hymns, religious regulations, homily/life narrative, and biblical narrative (180,622 words); and 2) written OE as far independent from Latin as possible, based on a selection from the York-Toronto-Helsinki Parsed Corpus of Old English Prose (YCOE) and representing five text types: laws, charters, correspondence, chronicle narrative, and homily/life narrative (274,757 words).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tools known as maximal functions are frequently used in harmonic analysis when studying local behaviour of functions. Typically they measure the suprema of local averages of non-negative functions. It is essential that the size (more precisely, the L^p-norm) of the maximal function is comparable to the size of the original function. When dealing with families of operators between Banach spaces we are often forced to replace the uniform bound with the larger R-bound. Hence such a replacement is also needed in the maximal function for functions taking values in spaces of operators. More specifically, the suprema of norms of local averages (i.e. their uniform bound in the operator norm) has to be replaced by their R-bound. This procedure gives us the Rademacher maximal function, which was introduced by Hytönen, McIntosh and Portal in order to prove a certain vector-valued Carleson's embedding theorem. They noticed that the sizes of an operator-valued function and its Rademacher maximal function are comparable for many common range spaces, but not for all. Certain requirements on the type and cotype of the spaces involved are necessary for this comparability, henceforth referred to as the “RMF-property”. It was shown, that other objects and parameters appearing in the definition, such as the domain of functions and the exponent p of the norm, make no difference to this. After a short introduction to randomized norms and geometry in Banach spaces we study the Rademacher maximal function on Euclidean spaces. The requirements on the type and cotype are considered, providing examples of spaces without RMF. L^p-spaces are shown to have RMF not only for p greater or equal to 2 (when it is trivial) but also for 1 < p < 2. A dyadic version of Carleson's embedding theorem is proven for scalar- and operator-valued functions. As the analysis with dyadic cubes can be generalized to filtrations on sigma-finite measure spaces, we consider the Rademacher maximal function in this case as well. It turns out that the RMF-property is independent of the filtration and the underlying measure space and that it is enough to consider very simple ones known as Haar filtrations. Scalar- and operator-valued analogues of Carleson's embedding theorem are also provided. With the RMF-property proven independent of the underlying measure space, we can use probabilistic notions and formulate it for martingales. Following a similar result for UMD-spaces, a weak type inequality is shown to be (necessary and) sufficient for the RMF-property. The RMF-property is also studied using concave functions giving yet another proof of its independence from various parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minimum Description Length (MDL) is an information-theoretic principle that can be used for model selection and other statistical inference tasks. There are various ways to use the principle in practice. One theoretically valid way is to use the normalized maximum likelihood (NML) criterion. Due to computational difficulties, this approach has not been used very often. This thesis presents efficient floating-point algorithms that make it possible to compute the NML for multinomial, Naive Bayes and Bayesian forest models. None of the presented algorithms rely on asymptotic analysis and with the first two model classes we also discuss how to compute exact rational number solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What can the statistical structure of natural images teach us about the human brain? Even though the visual cortex is one of the most studied parts of the brain, surprisingly little is known about how exactly images are processed to leave us with a coherent percept of the world around us, so we can recognize a friend or drive on a crowded street without any effort. By constructing probabilistic models of natural images, the goal of this thesis is to understand the structure of the stimulus that is the raison d etre for the visual system. Following the hypothesis that the optimal processing has to be matched to the structure of that stimulus, we attempt to derive computational principles, features that the visual system should compute, and properties that cells in the visual system should have. Starting from machine learning techniques such as principal component analysis and independent component analysis we construct a variety of sta- tistical models to discover structure in natural images that can be linked to receptive field properties of neurons in primary visual cortex such as simple and complex cells. We show that by representing images with phase invariant, complex cell-like units, a better statistical description of the vi- sual environment is obtained than with linear simple cell units, and that complex cell pooling can be learned by estimating both layers of a two-layer model of natural images. We investigate how a simplified model of the processing in the retina, where adaptation and contrast normalization take place, is connected to the nat- ural stimulus statistics. Analyzing the effect that retinal gain control has on later cortical processing, we propose a novel method to perform gain control in a data-driven way. Finally we show how models like those pre- sented here can be extended to capture whole visual scenes rather than just small image patches. By using a Markov random field approach we can model images of arbitrary size, while still being able to estimate the model parameters from the data.