2 resultados para Post Occupancy Evaluation (POE)
em Helda - Digital Repository of University of Helsinki
Resumo:
Positron emission tomography (PET) is an imaging technique in which radioactive positron-emitting tracers are used to study biochemical and physiological functions in humans and in animal experiments. The use of PET imaging has increased rapidly in recent years, as have special requirements in the fields of neurology and oncology for the development of syntheses for new, more specific and selective radiotracers. Synthesis development and automation are necessary when high amounts of radioactivity are needed for multiple PET studies. In addition, preclinical studies using experimental animal models are necessary for evaluating the suitability of new PET tracers for humans. For purification and analysing the labelled end-product, an effective radioanalytical method combined with an optimal radioactivity detection technique is of great importance. In this study, a fluorine-18 labelling synthesis method for two tracers was developed and optimized, and the usefulness of these tracers for possible prospective human studies was evaluated. N-(3-[18F]fluoropropyl)-2β-carbomethoxy-3β-(4-fluorophenyl)nortropane ([18F]β-CFT-FP) is a candidate PET tracer for the dopamine transporter (DAT), and 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO) is a well-known hypoxia marker for hypoxic but viable cells in tumours. The methodological aim of this thesis was to evaluate the status of thin-layer chromatography (TLC) combined with proper radioactivity detection measurement systems as a radioanalytical method. Three different detection methods of radioactivity were compared: radioactivity scanning, film autoradiography, and digital photostimulated luminescence (PSL) autoradiography. The fluorine-18 labelling synthesis for [18F]β-CFT-FP was developed and carbon-11 labelled [11C]β-CFT-FP was used to study the specificity of β-CFT-FP for the DAT sites in human post-mortem brain slices. These in vitro studies showed that β-CFT-FP binds to the caudate-putamen, an area rich of DAT. The synthesis of fluorine-18 labelled [18F]FMISO was optimized, and the tracer was prepared using an automated system with good and reproducible yields. In preclinical studies, the action of the radiation sensitizer estramustine phosphate on the radiation treatment and uptake of [18F]FMISO was evaluated, with results of great importance for later human studies. The methodological part of this thesis showed that radioTLC is the method of choice when combined with an appropriate radioactivity detection technique. Digital PSL autoradiography proved to be the most appropriate when compared to the radioactivity scanning and film autoradiography methods. The very high sensitivity, good resolution, and wide dynamic range of digital PSL autoradiography are its advantages in detection of β-emitting radiolabelled substances.
Resumo:
The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.