4 resultados para Polyethylene- Starch Blends
em Helda - Digital Repository of University of Helsinki
Resumo:
The present study investigated the potato starches and polyols which were used to prepare edible films. The amylose content and the gelatinization properties of various potato starches extracted from different potato cultivars were determined. The amylose content of potato starches varied between 11.9 and 20.1%. Onset temperatures of gelatinization of potato starches in excess water varied independently of the amylose content from 58 to 61°C determined using differential scanning calorimetry (DSC). The crystallinity of selected native starches with low, medium and high amylose content was determined by X-ray diffraction. The relative crystallinity was found to be around 10 13% in selected native potato starches containing 13 17% water. The glass transition temperature, crystallization melting behavior and relaxations of polyols, erythritol, sorbitol and xylitol, were determined using (DSC), dielectric analysis (DEA) and dynamic mechanical analysis (DMA). The glass transition temperatures of xylitol and sorbitol decreased as a result of water plasticization. Anhydrous amorphous erythritol crystallized rapidly. Edible films were obtained from solutions containing gelatinized starch, plasticizer (polyol or binary polyol mixture) and water by casting and evaporating water at 35°C. The present study investigated effects of plasticizer type and content on physical and mechanical properties of edible films stored at various relative water vapor pressures (RVP). The crystallinity of edible films with low, medium and high amylose content was determined by X-ray diffraction and they were found to be practically amorphous. Water sorption and water vapor permeability (WVP) of films was affected by the type and content of plasticizer. Water vapor permeability of films increased with increasing plasticizer content and storage RVP. Generally, Young's modulus and tensile strength decreased with increasing plasticizer and water content with a concurrent increase in elongation at break of films. High contents of xylitol and sorbitol resulted in changes in physical and mechanical properties of films probably due to phase separation and crystallization of xylitol and sorbitol which was not observed when binary polyol mixtures were used as plasticizers. The mechanical properties and the water vapor permeability (WVP) of the films were found to be independent of the amylose content.
Resumo:
Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.
Resumo:
When genome sections of wild Solanum species are bred into the cultivated potato (S. tuberosum L.) to obtain improved potato cultivars, the new cultivars must be evaluated for their beneficial and undesirable traits. Glycoalkaloids present in Solanum species are known for their toxic as well as for beneficial effects on mammals. On the other hand, glycoalkaloids in potato leaves provide natural protection against pests. Due to breeding, glycoalkaloid profile of the plant is affected. In addition, the starch properties in potato tubers can be affected as a result of breeding, because the crystalline properties are determined by the botanical source of the starch. Starch content and composition affect the texture of cooked and processed potatoes. In order to determine glycoalkaloid contents in Solanum species, simultaneous separation of glycoalkaloids and aglycones using reversed-phase high-performance liquid chromatography (HPLC) was developed. Clean-up of foliage samples was improved using a silica-based strong cation exchanger instead of octadecyl phases in solid-phase extraction. Glycoalkaloids alpha-solanine and alpha-chaconine were detected in potato tubers of cvs. Satu and Sini. The total glycoalkaloid concentration of non-peeled and immature tubers was at an acceptable level (under 20 mg/100 g of FW) in the cv. Satu, whereas concentration in cv. Sini was 23 mg/100 g FW. Solanum species (S. tuberosum, S. brevidens, S. acaule, and S. commersonii) and interspecific somatic hybrids (brd + tbr, acl + tbr, cmm + tbr) were analyzed for their glycoalkaloid contents using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The concentrations in the tubers of the brd + tbr and acl + tbr hybrids remained under 20 mg/100 g FW. Glycoalkaloid concentration in the foliage of the Solanum species was between 110 mg and 890 mg/100 g FW. However, the concentration in the foliage of S. acaule was as low as 26 mg/100 g FW. The total concentrations of brd + tbr, acl + tbr, and cmm + tbr hybrid foliages were 88 mg, 180 mg, and 685 mg/100 g FW, respectively. Glycoalkaloids of both parental plants as well as new combinations of aglycones and saccharides were detected in somatic hybrids. The hybrids contained mainly spirosolanes, and glycoalkaloid structures having no 5,6-double bond in the aglycone. Based on these results, the glycoalkaloid profiles of the hybrids may represent a safer and more beneficial spectrum of glycoalkaloids than that found in currently cultivated varieties. Starch nanostructure of three different cultivars (Satu, Saturna, and Lady Rosetta), a wild species S. acaule, and interspecific somatic hybrids were examined by wide-angle and small-angle X-ray scattering (WAXS, SAXS). For the first time, the measurements were conducted on fresh potato tuber samples. Crystallinity of starch, average crystallite size, and lamellar distance were determined from the X-ray patterns. No differences in the starch nanostructure between the three different cultivars were detected. However, tuber immaturity was detected by X-ray scattering methods when large numbers of immature and mature samples were measured and the results were compared. The present study shows that no significant changes occurred in the nanostructures of starches resulting from hybridizations of potato cultivars.