16 resultados para Plant functional types (PFTs)

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Continuing urbanization is a crucial driver of land transformation, having widespread impacts on virtually all ecosystems. Terrestrial ecosystems, including disturbed ones, are dependent on soils, which provide a multitude of ecosystem services. As soils are always directly and/or indirectly impacted through land transformation, land cover change causes soil change. Knowledge of ecosystem properties and functions in soils is increasing in importance as humans continue to concentrate into already densely-populated areas. Urban soils often have hampered functioning due to various disturbances resulting from human activity. Innovative solutions are needed to bring the lacking ecosystem services and quality of life to these urban environments. For instance, the ecosystem services of the urban green infrastructure may be substantially improved through knowledge of their functional properties. In the research forming this thesis, the impacts of four plant species (Picea abies, Calluna vulgaris, Lotus corniculatus and Holcus lanatus) on belowground biota and regulatory ecosystem services were investigated in two different urban soil types. The retention of inorganic nitrogen and phosphorus in the plant-soil system, decomposition of plant litter, primary production, and the degradation of polycyclic aromatic hydrocarbons (PAHs) were examined in the field and under laboratory conditions. The main objective of the research was to determine whether the different plant species (representing traits with varying litter decomposability) will give rise to dissimilar urban belowground communities with differing ecological functions. Microbial activity as well as the abundance of nematodes and enchytraeid worm biomass was highest below the legume L. corniculatus. L. corniculatus and the grass H. lanatus, producing labile or intermediate quality litter, enhanced the proportion of bacteria in the soil rhizosphere, while the recalcitrant litter-producing shrub C. vulgaris and the conifer P. abies stimulated the growth of fungi. The loss of nitrogen from the plant-soil system was small for H. lanatus and the combination of C. vulgaris + P. abies, irrespective of their energy channel composition. These presumably nitrogen-conservative plant species effectively diminished the leaching losses from the plant-soil systems with all the plant traits present. The laboratory experiment revealed a difference in N allocation between the plant traits: C. vulgaris and P. abies sequestered significantly more N in aboveground shoots in comparison to L. corniculatus and H. Lanatus. Plant rhizosphere effects were less clear for phosphorus retention, litter decomposition and the degradation of PAH compounds. This may be due to the relatively short experimental durations, as the maturation of the plant-soil system is likely to take a considerably longer time. The empirical studies of this thesis demonstrated that the soil communities rapidly reflect changes in plant coverage, and this has consequences for the functionality of soils. The energy channel composition of soils can be manipulated through plants, which was also supported by the results of the separate meta-analysis conducted in this thesis. However, further research is needed to understand the linkages between the biological community properties and ecosystem services in strongly human-modified systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information structure and Kabyle constructions Three sentence types in the Construction Grammar framework The study examines three Kabyle sentence types and their variants. These sentence types have been chosen because they code the same state of affairs but have different syntactic structures. The sentence types are Dislocated sentence, Cleft sentence, and Canonical sentence. I argue first that a proper description of these sentence types should include information structure and, second, that a description which takes into account information structure is possible in the Construction Grammar framework. The study thus constitutes a testing ground for Construction Grammar for its applicability to a less known language. It constitutes a testing ground notably because the differentiation between the three types of sentences cannot be done without information structure categories and, consequently, these categories must be integrated also in the grammatical description. The information structure analysis is based on the model outlined by Knud Lambrecht. In that model, information structure is considered as a component of sentence grammar that assures the pragmatically correct sentence forms. The work starts by an examination of the three sentence types and the analyses that have been done in André Martinet s functional grammar framework. This introduces the sentence types chosen as the object of study and discusses the difficulties related to their analysis. After a presentation of the state of the art, including earlier and more recent models, the principles and notions of Construction Grammar and of Lambrecht s model are introduced and explicated. The information structure analysis is presented in three chapters, each treating one of the three sentence types. The analyses are based on spoken language data and elicitation. Prosody is included in the study when a syntactic structure seems to code two different focus structures. In such cases, it is pertinent to investigate whether these are coded by prosody. The final chapter presents the constructions that have been established and the problems encountered in analysing them. It also discusses the impact of the study on the theories used and on the theory of syntax in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased interest in the cholesterol-lowering effect of plant sterols has led to development of plant sterol-enriched foods. When products are enriched, the safety of the added components must be evaluated. In the case of plant sterols, oxidation is the reaction of main concern. In vitro studies have indicated that cholesterol oxides may have harmful effects. Due their structural similarity, plant sterol oxidation products may have similar health implications. This study concentrated on developing high-performance liquid chromatography (HPLC) methods that enable the investigation of formation of both primary and secondary oxidation products and thus can be used for oxidation mechanism studies of plant sterols. The applicability of the methods for following the oxidation reactions of plant sterols was evaluated by using oxidized stigmasterol and sterol mixture as model samples. An HPLC method with ultraviolet and fluorescence detection (HPLC-UV-FL) was developed. It allowed the specific detection of hydroperoxides with FL detection after post-column reagent addition. The formation of primary and secondary oxidation products and amount of unoxidized sterol could be followed by using UV detection. With the HPLC-UV-FL method, separation between oxides was essential and oxides of only one plant sterol could be quantified in one run. Quantification with UV can lead to inaccuracy of the results since the number of double bonds had effect on the UV absorbance. In the case of liquid chromatography-mass spectrometry (LC-MS), separation of oxides with different functionalities was important because some oxides of the same sterol have similar molecular weight and moreover epimers have similar fragmentation behaviour. On the other hand, coelution of different plant sterol oxides with the same functional group was acceptable since they differ in molecular weights. Results revealed that all studied plant sterols and cholesterol seem to have similar fragmentation behaviour, with only relative ion abundances being slightly different. The major advantage of MS detection coupled with LC separation is the capability to analyse totally or partly coeluting analytes if these have different molecular weights. The HPLC-UV-FL and LC-MS methods were demonstrated to be suitable for studying the photo-oxidation and thermo-oxidation reactions of plant sterols. The HPLC-UV-FL method was able to show different formation rates of hydroperoxides during photo-oxidation. The method also confirmed that plant sterols have similar photo-oxidation behaviour to cholesterol. When thermo-oxidation of plant sterols was investigated by HPLC-UV-FL and LC-MS, the results revealed that the formation and decomposition of individual hydroperoxides and secondary oxidation products could be studied. The methods used revealed that all of the plant sterols had similar thermo-oxidation behaviour when compared with each other, and the predominant reactions and oxidation rates were temperature dependent. Overall, these findings showed that with these LC methods the oxidation mechanisms of plant sterols can be examined in detail, including the formation and degradation of individual hydroperoxides and secondary oxidation products, with less sample pretreatment and without derivatization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taking the appropriation of objects as a theoretical starting point, this study makes a distinction between a conceptual and practical level of adopting new objects and products in everyday life. The study applies the concept of appropriation in social food research and examines consumers appropriation of functional foods, i.e., foods developed to improve health and well-being or reduce the risk of disease beyond the usual nutritional effects of foods. The study uses the concept of appropriation to understand the adoption and the process of making functional foods our own . First, the study focuses on the conceptual appropriation by analysing consumers interpretations and opinions on functional foods. Second, it analyses the use of functional foods and examines the role of sociodemographic and food- and health-related background factors in the use of functional foods. Both quantitative and qualitative data were used in the study. Altogether 1210 Finns representative of the population took part in a survey carried out in 2002 as computer-assisted telephone interviews (CATI). The survey examined the acceptability and use of functional foods in Finland. In 2004, eight focus group discussions were organised for 45 users and non-users of cholesterol-lowering spreads. The qualitative study focused on consumers interpretative perspectives on healthy eating and functional foods. The findings are reported in four original articles and a summary article. The results show that the appropriation of functional foods is a multifaceted phenomenon. The conceptual appropriation is related to consumers interpretations of functional foods in the context of healthy foods and healthy eating; their trust in the products, their manufacturers, research and control; and the relationship of functional foods and the ideal of natural foods. The analysis of the practical appropriation of four different types of foods marketed as functional showed that there are sociodemographic differences between users and non-users of the products, but more importantly, the differences are related to consumers food- and health-related views and practices. Consumers ways of appropriating functional foods in the conceptual and practical sense take shape in a complex web of ideas and everyday practices concerning food, health and eating as a whole. The results also indicate that the conceptual and practical appropriation are not necessarily uniform or coherent processes. Consumers interpret healthy eating and functional foods from a variety of perspectives and there is a multiplicity of rationales of using functional foods. Appropriation embraces many opposing dimensions simultaneously: good experiences and doubts, approval and criticism, expectations and things taken for granted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predictions covering the whole duration of peat production in connection with evaluations of environmental impact is at present highly limited. National and international decisions regarding monitoring of the condition of watercourses and their improvement and restoration require more sophisticated evaluation methods in order to be able to forecast watercourse loading and its environmental impacts at the stage of land-use planning and preparations for peat production.The present project thus set out from the premise that it would be possible on the basis of existing mire and peat data properties to construct estimates for the typical loading from production mires over the whole duration of their exploitation. Finland has some 10 million hectares of peatland, accounting for almost a third of its total area. Macroclimatic conditions have varied in the course of the Holocene growth and development of this peatland, and with them the habitats of the peat-forming plants. Temperatures and moisture conditions have played a significant role in determining the dominant species of mire plants growing there at any particular time, the resulting mire types and the accumulation and deposition of plant remains to form the peat. The above climatic, environmental and mire development factors, together with ditching, have contributed, and continue to contribute, to the existence of peat horizons that differ in their physical and chemical properties, leading to differences in material transport between peatlands in a natural state and mires that have been ditched or prepared for forestry and peat production. Watercourse loading from the ditching of mires or their use for peat production can have detrimental effects on river and lake environments and their recreational use, especially where oxygen-consuming organic solids and soluble organic substances and nutrients are concerned. It has not previously been possible, however, to estimate in advance the watercourse loading likely to arise from ditching and peat production on the basis of the characteristics of the peat in a mire, although earlier observations have indicated that watercourse loading from peat production can vary greatly and it has been suggested that differences in peat properties may be of significance in this. Sprinkling is used here in combination with simulations of conditions in a milled peat production area to determine the influence of the physical and chemical properties of milled peats in production mires on surface runoff into the drainage ditches and the concentrations of material in the runoff water. Sprinkling and extraction experiments were carried out on 25 samples of milled Carex (C) and Sphagnum (S) peat of humification grades H 2.5 8.5 with moisture content in the range 23.4 89% on commencement of the first sprinkling, which was followed by a second sprinkling 24 hours later. The water retention capacity of the peat was best, and surface runoff lowest, with Sphagnum and Carex peat samples of humification grades H 2.5 6 in the moisture content class 56 75%. On account of the hydrophobicity of dry peat, runoff increased in a fairly regular manner with drying of the sample from 55% to 24 30%. Runoff from the samples with an original moisture content over 55% increased by 63% in the second round of sprinkling relative to the first, as they had practically reached saturation point on the first occasion, while those with an original moisture content below 55% retained their high runoff in the second round, due to continued hydrophobicity. The well-humified samples (H 6.5 8.5) with a moisture content over 80% showed a low water retention capacity and high runoff in both rounds of sprinkling. Loading of the runoff water with suspended solids, total phosphorus and total nitrogen, and also the chemical oxygen demand (CODMn O2), varied greatly in the sprinkling experiment, depending on the peat type and degree of humification, but concentrations of the same substances in the two sprinklings were closely or moderately closely correlated and these correlations were significant. The concentrations of suspended solids in the runoff water observed in the simulations of a peat production area and the direct surface runoff from it into the drainage ditch system in response to rain (sprinkling intensity 1.27 mm/min) varied c. 60-fold between the degrees of humification in the case of the Carex peats and c. 150-fold for the Sphagnum peats, while chemical oxygen demand varied c. 30-fold and c. 50-fold, respectively, total phosphorus c. 60-fold and c. 66-fold, total nitrogen c. 65-fold and c. 195-fold and ammonium nitrogen c. 90-fold and c. 30-fold. The increases in concentrations in the runoff water were very closely correlated with increases in humification of the peat. The correlations of the concentrations measured in extraction experiments (48 h) with peat type and degree of humification corresponded to those observed in the sprinkler experiments. The resulting figures for the surface runoff from a peat production area into the drainage ditches simulated by means of sprinkling and material concentrations in the runoff water were combined with statistics on the mean extent of daily rainfall (0 67 mm) during the frost-free period of the year (May October) over an observation period of 30 years to yield typical annual loading figures (kg/ha) for suspended solids (SS), chemical oxygen demand of organic matter (CODmn O2), total phosphorus (tot. P) and total nitrogen (tot. N) entering the ditches with respect to milled Carex (C) and Sphagnum (S) peats of humification grades H 2.5 8.5. In order to calculate the loading of drainage ditches from a milled peat production mire with the aid of these annual comparative values (in kg/ha), information is required on the properties of the intended production mire and its peat. Once data are available on the area of the mire, its peat depth, peat types and their degrees of humification, dry matter content, calorific value and corresponding energy content, it is possible to produce mutually comparable estimates for individual mires with respect to the annual loading of the drainage ditch system and the surrounding watercourse for the whole service life of the production area, the duration of this service life, determinations of energy content and the amount of loading per unit of energy generated (kg/MWh). In the 8 mires in the Köyhäjoki basin, Central Ostrobothnia, taken as an example, the loading of suspended solids (SS) in the drainage ditch networks calculated on the basis of the typical values obtained here and existing mire and peat data and expressed per unit of energy generated varied between the mires and horizons in the range 0.9 16.5 kg/MWh. One of the aims of this work was to develop means of making better use of existing mire and peat data and the results of corings and other field investigations. In this respect combination of the typical loading values (kg/ha) obtained here for S, SC, CS and C peats and the various degrees of humification (H 2.5 8.5) with the above mire and peat data by means of a computer program for the acquisition and handling of such data would enable all the information currently available and that deposited in the system in the future to be used for defining watercourse loading estimates for mires and comparing them with the corresponding estimates of energy content. The intention behind this work has been to respond to the challenge facing the energy generation industry to find larger peat production areas that exert less loading on the environment and to that facing the environmental authorities to improve the means available for estimating watercourse loading from peat production and its environmental impacts in advance. The results conform well to the initial hypothesis and to the goals laid down for the research and should enable watercourse loading from existing and planned peat production to be evaluated better in the future and the resulting impacts to be taken into account when planning land use and energy generation. The advance loading information available in this way would be of value in the selection of individual peat production areas, the planning of their exploitation, the introduction of water protection measures and the planning of loading inspections, in order to achieve controlled peat production that pays due attention to environmental considerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past ten years, large-scale transcript analysis using microarrays has become a powerful tool to identify and predict functions for new genes. It allows simultaneous monitoring of the expression of thousands of genes and has become a routinely used tool in laboratories worldwide. Microarray analysis will, together with other functional genomics tools, take us closer to understanding the functions of all genes in genomes of living organisms. Flower development is a genetically regulated process which has mostly been studied in the traditional model species Arabidopsis thaliana, Antirrhinum majus and Petunia hybrida. The molecular mechanisms behind flower development in them are partly applicable in other plant systems. However, not all biological phenomena can be approached with just a few model systems. In order to understand and apply the knowledge to ecologically and economically important plants, other species also need to be studied. Sequencing of 17 000 ESTs from nine different cDNA libraries of the ornamental plant Gerbera hybrida made it possible to construct a cDNA microarray with 9000 probes. The probes of the microarray represent all different ESTs in the database. From the gerbera ESTs 20% were unique to gerbera while 373 were specific to the Asteraceae family of flowering plants. Gerbera has composite inflorescences with three different types of flowers that vary from each other morphologically. The marginal ray flowers are large, often pigmented and female, while the central disc flowers are smaller and more radially symmetrical perfect flowers. Intermediate trans flowers are similar to ray flowers but smaller in size. This feature together with the molecular tools applied to gerbera, make gerbera a unique system in comparison to the common model plants with only a single kind of flowers in their inflorescence. In the first part of this thesis, conditions for gerbera microarray analysis were optimised including experimental design, sample preparation and hybridization, as well as data analysis and verification. Moreover, in the first study, the flower and flower organ-specific genes were identified. After the reliability and reproducibility of the method were confirmed, the microarrays were utilized to investigate transcriptional differences between ray and disc flowers. This study revealed novel information about the morphological development as well as the transcriptional regulation of early stages of development in various flower types of gerbera. The most interesting finding was differential expression of MADS-box genes, suggesting the existence of flower type-specific regulatory complexes in the specification of different types of flowers. The gerbera microarray was further used to profile changes in expression during petal development. Gerbera ray flower petals are large, which makes them an ideal model to study organogenesis. Six different stages were compared and specifically analysed. Expression profiles of genes related to cell structure and growth implied that during stage two, cells divide, a process which is marked by expression of histones, cyclins and tubulins. Stage 4 was found to be a transition stage between cell division and expansion and by stage 6 cells had stopped division and instead underwent expansion. Interestingly, at the last analysed stage, stage 9, when cells did not grow any more, the highest number of upregulated genes was detected. The gerbera microarray is a fully-functioning tool for large-scale studies of flower development and correlation with real-time RT-PCR results show that it is also highly sensitive and reliable. Gene expression data presented here will be a source for gene expression mining or marker gene discovery in the future studies that will be performed in the Gerbera Laboratory. The publicly available data will also serve the plant research community world-wide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortinarius is the largest genus of Agaricales with a worldwide distribution. So far, over 4000 Cortinarius names and combinations have been published. Cortinarius spp. form ectomycorrhizae with different trees and shrubs. A majority of the Cortinarius species have narrow ecological preferences and many form ectomycorrhiza with only one or few host species. The subgenus Telamonia sensu lato (s. lat.), comprising the greatest number of species, is the most poorly known of the subgenera of Cortinarius. The centre of diversity is in the northern hemisphere, although some species of the group are also recognized in the southern hemisphere. The aim of this thesis was to study the taxonomy of Cortinarius subgenus Telamonia p.p. species based on morphological and molecular data, as well as to study the ecology and distribution of the species in North Europe. The taxonomical problems encountered and the difficulty in finding and studying all the relevant names and types slowed down the study. The diversity of the subgenus Telamonia s. lat. in North Europe (excluding sect. Hydrocybe, Icrustati and Anomali) was found to be far greater than previously thought. Even many of the common species have not yet been described. So far, ca. 200 species have been recognised from the Nordic countries, but the sampling in most groups does not cover the whole diversity and especially the southern deciduous forest species are underrepresented in our study. In most cases phylogenetic (only based on ITS data) and morphological species recognition were in concordance, but in a few cases morphologically delimited species had almost identical ITS sequences, raising the question as to whether ITS is always variable enough for species recognition. The opposite situation, in which a morphologically uniform species included two phylogenetically distinct lineages, however, was also encountered, suggesting the possibility of cryptic species in Cortinarius. In our studies no taxa below species level were recognised and the aforementioned results indicate that presumably they can only be recognised genetically. Based on our preliminary results a revision of the infrageneric classification in Cortinarius subgenus Telamonia s. lat. is needed, and more sections should be established for a meaningful and functional classification. Many groups have turned out to be artificial, and it seems evident that many characteristics have been over- or underemphasised. Many morphological characteristics, however, are useful in the identification of telamonioid species and e.g. some spore characteristics have often been overlooked. Our studies have concentrated on North Europe, but we have found some similarities with North European and North American taxa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time of the large sequencing projects has enabled unprecedented possibilities of investigating more complex aspects of living organisms. Among the high-throughput technologies based on the genomic sequences, the DNA microarrays are widely used for many purposes, including the measurement of the relative quantity of the messenger RNAs. However, the reliability of microarrays has been strongly doubted as robust analysis of the complex microarray output data has been developed only after the technology had already been spread in the community. An objective of this study consisted of increasing the performance of microarrays, and was measured by the successful validation of the results by independent techniques. To this end, emphasis has been given to the possibility of selecting candidate genes with remarkable biological significance within specific experimental design. Along with literature evidence, the re-annotation of the probes and model-based normalization algorithms were found to be beneficial when analyzing Affymetrix GeneChip data. Typically, the analysis of microarrays aims at selecting genes whose expression is significantly different in different conditions followed by grouping them in functional categories, enabling a biological interpretation of the results. Another approach investigates the global differences in the expression of functionally related groups of genes. Here, this technique has been effective in discovering patterns related to temporal changes during infection of human cells. Another aspect explored in this thesis is related to the possibility of combining independent gene expression data for creating a catalog of genes that are selectively expressed in healthy human tissues. Not all the genes present in human cells are active; some involved in basic activities (named housekeeping genes) are expressed ubiquitously. Other genes (named tissue-selective genes) provide more specific functions and they are expressed preferably in certain cell types or tissues. Defining the tissue-selective genes is also important as these genes can cause disease with phenotype in the tissues where they are expressed. The hypothesis that gene expression could be used as a measure of the relatedness of the tissues has been also proved. Microarray experiments provide long lists of candidate genes that are often difficult to interpret and prioritize. Extending the power of microarray results is possible by inferring the relationships of genes under certain conditions. Gene transcription is constantly regulated by the coordinated binding of proteins, named transcription factors, to specific portions of the its promoter sequence. In this study, the analysis of promoters from groups of candidate genes has been utilized for predicting gene networks and highlighting modules of transcription factors playing a central role in the regulation of their transcription. Specific modules have been found regulating the expression of genes selectively expressed in the hippocampus, an area of the brain having a central role in the Major Depression Disorder. Similarly, gene networks derived from microarray results have elucidated aspects of the development of the mesencephalon, another region of the brain involved in Parkinson Disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiosperms represent a huge diversity in floral structures. Thus, they provide an attractive target for comparative developmental genetics studies. Research on flower development has focused on few main model plants, and studies on these species have revealed the importance of transcription factors, such as MADS-box and TCP genes, for regulating the floral form. The MADS-box genes determine floral organ identities, whereas the TCP genes are known to regulate flower shape and the number of floral organs. In this study, I have concentrated on these two gene families and their role in regulating flower development in Gerbera hybrida, a species belonging to the large sunflower family (Asteraceae). The Gerbera inflorescence is comprised of hundreds of tightly clustered flowers that differ in their size, shape and function according to their position in the inflorescence. The presence of distinct flower types tells Gerbera apart from the common model species that bear only single kinds of flowers in their inflorescences. The marginally located ray flowers have large bilaterally symmetrical petals and non-functional stamens. The centrally located disc flowers are smaller, have less pronounced bilateral symmetry and carry functional stamens. Early stages of flower development were studied in Gerbera to understand the differentiation of flower types better. After morphological analysis, we compared gene expression between ray and disc flowers to reveal transcriptional differences in flower types. Interestingly, MADS-box genes showed differential expression, suggesting that they might take part in defining flower types by forming flower-type-specific regulatory complexes. Functional analysis of a CYCLOIDEA-like TCP gene GhCYC2 provided evidence that TCP transcription factors are involved in flower type differentiation in Gerbera. The expression of GhCYC2 is ray-flower-specific at early stages of development and activated only later in disc flowers. Overexpression of GhCYC2 in transgenic Gerbera-lines causes disc flowers to obtain ray-flower-like characters, such as elongated petals and disrupted stamen development. The expression pattern and transgenic phenotypes further suggest that GhCYC2 may shape ray flowers by promoting organ fusion. Cooperation of GhCYC2 with other Gerbera CYC-like TCP genes is most likely needed for proper flower type specification, and by this means for shaping the elaborate inflorescence structure. Gerbera flower development was also approached by characterizing B class MADS-box genes, which in the main model plants are known regulators of petal and stamen identity. The four Gerbera B class genes were phylogenetically grouped into three clades; GGLO1 into the PI/GLO clade, GDEF2 and GDEF3 into the euAP3 clade and GDEF1 into the TM6 clade. Putative orthologs for GDEF2 and GDEF3 were identified in other Asteraceae species, which suggests that they appeared through an Asteraceae-specific duplication. Functional analyses indicated that GGLO1 and GDEF2 perform conventional B-function as they determine petal and stamen identities. Our studies on GDEF1 represent the first functional analysis of a TM6-like gene outside the Solanaceae lineage and provide further evidence for the role of TM6 clade members in specifying stamen development. Overall, the Gerbera B class genes showed both commonalities and diversifications with the conventional B-function described in the main model plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Filamentous fungi of the subphylum Pezizomycotina are well known as protein and secondary metabolite producers. Various industries take advantage of these capabilities. However, the molecular biology of yeasts, i.e. Saccharomycotina and especially that of Saccharomyces cerevisiae, the baker's yeast, is much better known. In an effort to explain fungal phenotypes through their genotypes we have compared protein coding gene contents of Pezizomycotina and Saccharomycotina. Only biomass degradation and secondary metabolism related protein families seem to have expanded recently in Pezizomycotina. Of the protein families clearly diverged between Pezizomycotina and Saccharomycotina, those related to mitochondrial functions emerge as the most prominent. However, the primary metabolism as described in S. cerevisiae is largely conserved in all fungi. Apart from the known secondary metabolism, Pezizomycotina have pathways that could link secondary metabolism to primary metabolism and a wealth of undescribed enzymes. Previous studies of individual Pezizomycotina genomes have shown that regardless of the difference in production efficiency and diversity of secreted proteins, the content of the known secretion machinery genes in Pezizomycotina and Saccharomycotina appears very similar. Genome wide analysis of gene products is therefore needed to better understand the efficient secretion of Pezizomycotina. We have developed methods applicable to transcriptome analysis of non-sequenced organisms. TRAC (Transcriptional profiling with the aid of affinity capture) has been previously developed at VTT for fast, focused transcription analysis. We introduce a version of TRAC that allows more powerful signal amplification and multiplexing. We also present computational optimisations of transcriptome analysis of non-sequenced organism and TRAC analysis in general. Trichoderma reesei is one of the most commonly used Pezizomycotina in the protein production industry. In order to understand its secretion system better and find clues for improvement of its industrial performance, we have analysed its transcriptomic response to protein secretion stress conditions. In comparison to S. cerevisiae, the response of T. reesei appears different, but still impacts on the same cellular functions. We also discovered in T. reesei interesting similarities to mammalian protein secretion stress response. Together these findings highlight targets for more detailed studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microchips for use in biomolecular analysis show a lot of promise for medical diagnostics and biomedical basic research. Among the potential advantages are more sensitive and faster analyses as well as reduced cost and sample consumption. Due to scaling laws, the surface are to volume ratios of microfluidic chips is very high. Because of this, tailoring the surface properties and surface functionalization are very important technical issues for microchip development. This thesis studies two different types of functional surfaces, surfaces for open surface capillary microfluidics and surfaces for surface assisted laser desorption ionization mass spectrometry, and combinations thereof. Open surface capillary microfluidics can be used to transport and control liquid samples on easily accessible open surfaces simply based on surface forces, without any connections to pumps or electrical power sources. Capillary filling of open partially wetting grooves is shown to be possible with certain geometries, aspect ratios and contact angles, and a theoretical model is developed to identify complete channel filling domains, as well as partial filling domains. On the other hand, partially wetting surfaces with triangular microstructures can be used for achieving directional wetting, where the water droplets do not spread isotropically, but instead only spread to a predetermined sector. Furthermore, by patterning completely wetting and superhydrophobic areas on the same surface, complex droplet shapes are achieved, as the water stretches to make contact with the wetting surface, but does not enter into the superhydrophobic domains. Surfaces for surface assisted laser desorption ionization mass spectrometry are developed by applying various active thin film coatings on multiple substrates, in order to separate surface and bulk effects. Clear differences are observed between both surface and substrate layers. The best performance surfaces consisted of amorphous silicon coating and an inorganic-organic hybrid substrate, with nanopillars and nanopores. These surfaces are used for matrix-free ionization of drugs, peptides and proteins, and for some analytes, the detection limits were in the high attomoles. Microfluidics and laser desorption ionization surfaces are combined on a functionalized drying platforms, where the surface is used to control the shape of the deposited analyte droplet, and the shape of the initial analyte droplet affects the dried droplet solute deposition pattern. The deposited droplets can then directly detected by mass spectrometry. Utilizing this approach, results of analyte concentration, splitting and separation are demonstrated.