20 resultados para Planetary rings

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large proportion of our knowledge about the surfaces of atmosphereless solar-system bodies is obtained through remote-sensing measurements. The measurements can be carried out either as ground-based telescopic observations or space-based observations from orbiting spacecraft. In both cases, the measurement geometry normally varies during the observations due to the orbital motion of the target body, the spacecraft, etc.. As a result, the data are acquired over a variety of viewing and illumination angles. Surfaces of planetary bodies are usually covered with a layer of loose, broken-up rock material called the regolith whose physical properties affect the directional dependence of remote-sensed measurements. It is of utmost importance for correct interpretation of the remote-sensed data to understand the processes behind this alteration. In the thesis, the multi-angular effects that the physical properties of the regolith have on remote-sensing measurements are studied in two regimes of electromagnetic radiation, visible to near infrared and soft X-rays. These effects are here termed generally the regolith effects in remote sensing. Although the physical mechanisms that are important in these regions are largely different, notable similarities arise in the methodology that is used in the study of the regolith effects, including the characterization of the regolith both in experimental studies and in numerical simulations. Several novel experimental setups have been constructed for the thesis. Alongside the experimental work, theoretical modelling has been carried out, and results from both approaches are presented. Modelling of the directional behaviour of light scattered from a regolith is utilized to obtain shape and spin-state information of several asteroids from telescopic observations and to assess the surface roughness and single-scattering properties of lunar maria from spacecraft observations. One of the main conclusions is that the azimuthal direction is an important factor in detailed studies of planetary surfaces. In addition, even a single parameter, such as porosity, can alter the light scattering properties of a regolith significantly. Surface roughness of the regolith is found to alter the elemental fluorescence line ratios of a surface obtained through planetary soft X-ray spectrometry. The results presented in the thesis are among the first to report this phenomenon. Regolith effects need to be taken into account in the analysis of remote-sensed data, providing opportunities for retrieving physical parameters of the surface through inverse methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work examines stable isotope ratios of carbon, oxygen and hydrogen in annual growth rings of trees. Isotopic composition in wood cellulose is used as a tool to study past climate. The method benefits from the accurate and precise dating provided by dendrochronology. In this study the origin, nature and the strength of climatic correlations are studied on different temporal scales and at different sites in Finland. The origin of carbon isotopic signal is in photosynthetic fractionation. The basic physical and chemical fractionations involved are reasonably well understood. This was confirmed by measuring instantaneous photosynthetic discrimination on Scots pine (Pinus sylvestris L.). The internal conductance of CO2 was recognized to have a significant impact on the observed fractionation, and further investigations are suggested to quantify its role in controlling the isotopic signal of photosynthates. Isotopic composition of the produced biomass can potentially be affected by variety of external factors that induce physiological changes in trees. Response of carbon isotopic signal in tree ring cellulose to changes in resource availability was assessed in a manipulation experiment. It showed that the signal was relatively stable despite of changes in water and nitrogen availability to the tree. Palaeoclimatic reconstructions are typically based on functions describing empirical relationship between isotopic and climatic parameters. These empirical relationships may change depending on the site conditions, species and timeframe studied. Annual variation in Scots pine tree ring carbon and oxygen isotopic composition was studied in northern and in central eastern Finland and annual variation in tree ring latewood carbon, oxygen and hydrogen isotopic ratio in Oak (Quercus robur L.) was studied in southern Finland. In all of the studied sites at least one of the studied isotope ratios was shown to record climate strongly enough to be used in climatic reconstructions. Using the observed relationships, four-century-long climate reconstructions from living Scots pine were created for northern and central eastern Finland. Also temporal stability of the relationships between three proxy indicators, tree ring growth and carbon and oxygen isotopic composition was studied during the four-hundred-year period. Isotope ratios measured from tree rings in Finland were shown to be sensitive indicators of climate. Increasing understanding of environmental controls and physiological mechanisms affecting tree ring isotopic composition will make possible more accurate interpretation of isotope data. This study also demonstrated that by measuring multiple isotopes and physical proxies from the same tree rings, additional information on tree physiology can be obtained. Thus isotopic ratios measured from tree ring cellulose provide means to improve the reliability of climate reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hamiltonian systems in stellar and planetary dynamics are typically near integrable. For example, Solar System planets are almost in two-body orbits, and in simulations of the Galaxy, the orbits of stars seem regular. For such systems, sophisticated numerical methods can be developed through integrable approximations. Following this theme, we discuss three distinct problems. We start by considering numerical integration techniques for planetary systems. Perturbation methods (that utilize the integrability of the two-body motion) are preferred over conventional "blind" integration schemes. We introduce perturbation methods formulated with Cartesian variables. In our numerical comparisons, these are superior to their conventional counterparts, but, by definition, lack the energy-preserving properties of symplectic integrators. However, they are exceptionally well suited for relatively short-term integrations in which moderately high positional accuracy is required. The next exercise falls into the category of stability questions in solar systems. Traditionally, the interest has been on the orbital stability of planets, which have been quantified, e.g., by Liapunov exponents. We offer a complementary aspect by considering the protective effect that massive gas giants, like Jupiter, can offer to Earth-like planets inside the habitable zone of a planetary system. Our method produces a single quantity, called the escape rate, which characterizes the system of giant planets. We obtain some interesting results by computing escape rates for the Solar System. Galaxy modelling is our third and final topic. Because of the sheer number of stars (about 10^11 in Milky Way) galaxies are often modelled as smooth potentials hosting distributions of stars. Unfortunately, only a handful of suitable potentials are integrable (harmonic oscillator, isochrone and Stäckel potential). This severely limits the possibilities of finding an integrable approximation for an observed galaxy. A solution to this problem is torus construction; a method for numerically creating a foliation of invariant phase-space tori corresponding to a given target Hamiltonian. Canonically, the invariant tori are constructed by deforming the tori of some existing integrable toy Hamiltonian. Our contribution is to demonstrate how this can be accomplished by using a Stäckel toy Hamiltonian in ellipsoidal coordinates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the dissertation was to determine the concept of sustainable development according to current understanding and to analyze the structuration of sustainable daily life and how it varies between different groups. The present dissertation is both a literature-based theoretical study and data-based empirical research. The theoretical framework of the study was a greated model of the Structuration of Sustainability in Everyday Life. The model is based on a synthesis of Giddens Theory of Structuration (1984), Spaargaren JA van Vliet's Theory of Consumption as Social Practices (2000) and principles of sustainable development. According to the model created, sustainable everyday life is generated in a context of internal and external factors compromising the interests of ecosystems, society and business. The literature used in the thesis included international and national statements on sustainable development and research into sustainability and the transition to sustainable societies. The data were collected at Helsinki Metropolia University of Applied Sciences. The discretionary sample consisted of students of social services (n = 210) and were collected using the semantic differential technique. The data were analyzed using quantitative and qualitative methods. The results showed that the value placed on ecological, economic and social sustainability increased with age. Activity in non governmental organizations was associated with the acceptance of sustainable development as a whole and especially with global responsibility. Women's everyday life promoted sustainability more than men´s. People living in Helsinki had more sustainable ways of living than those living in the surrounding municipalities because of greater recycling and the low importance given to ownership. Prefering vegetarian food turned out to be a real opportunity for a more sustainable way of living because there were few barriers identified. Contradictory human behavior occurred when advanced sustainable consumer were ready to risk their health. The importance of communality was high and it was considered an aspect of health. The most significant obstacles to sustainable development in daily life were high costs, lack of knowledge and busyness. Similar attitudes towards sustainable development translate into different people´s behavior, which indicates complexities of the behaviour change in the context of sustainable development. The role of non governmental organizations is significant in increasing global responsibility. Education presents an opportunity to increase sustainability, but there are challenges to face from system thinking and in understanding entities in a state of transition towards sustainable everyday life. The responsibility of policy makers is paramount because high costs create a barrier to a sustainable way of living. The implementation of the concept of sustainable development should be focused on the planetary ethics which cover humans, animals, plants and ecosystems. Keywords: Sustainable development, sustainable thinking, behaviour change  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to study the basic relationships between thinning and fertilisation, tree growth rate and wood properties of Norway spruce (Picea abies (L.) Karst.) throughout a stand rotation. The material consisted of a total of 109 trees from both long-term thinning (Heinola, 61°10'N, 26°01'E; Punkaharju, 61°49'N, 29°19'E) and fertilisation-thinning experiments (Parikkala, 61°36'N, 29°22'E; Suonenjoki, 62°45'N, 27°00'E) in Finland. Wood properties, i.e., radial increment, wood density, latewood proportion, tracheid length, cell wall thickness and lumen diameter, as well as relative lignin content, were measured in detail from the pith to the bark, as well as from the stem base towards the stem apex. Intensive thinning and fertilisation treatments of Norway spruce stands increased (8% 64%) the radial increment of studied trees at breast height (1.3 m). At the same time, a faster growth rate slightly decreased average wood density (2% 7%), tracheid length (0% 9%) and cell wall thickness (1% 17%). The faster growth resulted in only small changes (0% 9%) in lumen diameter and relative lignin content (1% 2%; lignin content was 25.4% 26%). However, the random variation in wood properties was large both between and within trees and annual rings. The results of this thesis indicate that the prevailing thinning and fertilisation treatments of Norway spruce stands in Fennoscandia may significantly enhance the radial increment of individual trees, and cause only small or no detrimental changes in wood and tracheid properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical and physical properties of bimetallic clusters have attracted considerable attention due to the potential technological applications of mixed-metal systems. It is of fundamental interests to study clusters because they are the link between atomic surface and bulk properties. More information of metal-metal bond in small clusters can be hence released. The studies in my thesis mainly focus on the two different kinds of bimetallic clusters: the clusters consisting of extraordinary shaped all metal four-membered rings and a series of sodium auride clusters. As described in most general organic chemistry books nowadays, a group of compounds are classified as aromatic compounds because of their remarkable stabilities, particular geometrical and energetic properties and so on. The notation of aromaticity is essentially qualitative. More recently, the connection has been made between aromaticity and energetic and magnetic properties. Also, the discussions of the aromatic nature of molecular rings are no longer limited to organic compounds obeying the Hückel’s rule. In our research, we mainly applied the GIMIC method to several bimetallic clusters at the CCSD level, and compared the results with those obtained by using chemical shift based methods. The magnetically induced ring currents can be generated easily by employing GIMIC method, and the nature of aromaticity for each system can be therefore clarified. We performed intensive quantum chemical calculations to explore the characters of the anionic sodium auride clusters and the corresponding neutral clusters since it has been fascinating in investigating molecules with gold atom involved due to its distinctive physical and chemical properties. As small gold clusters, the sodium auride clusters seem to form planar structures. With the addition of a negative charge, the gold atom in anionic clusters prefers to carry the charge and orients itself away from other gold atoms. As a result, the energetically lowest isomer for an anionic cluster is distinguished from the one for the corresponding neutral cluster. Mostly importantly, we presented a comprehensive strategy of ab initio applications to computationally implement the experimental photoelectron spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi- and intralake datasets of fossil midge assemblages in surface sediments of small shallow lakes in Finland were studied to determine the most important environmental factors explaining trends in midge distribution and abundance. The aim was to develop palaeoenvironmental calibration models for the most important environmental variables for the purpose of reconstructing past environmental conditions. The developed models were applied to three high-resolution fossil midge stratigraphies from southern and eastern Finland to interpret environmental variability over the past 2000 years, with special focus on the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and recent anthropogenic changes. The midge-based results were compared with physical properties of the sediment, historical evidence and environmental reconstructions based on diatoms (Bacillariophyta), cladocerans (Crustacea: Cladocera) and tree rings. The results showed that the most important environmental factor controlling midge distribution and abundance along a latitudinal gradient in Finland was the mean July air temperature (TJul). However, when the dataset was environmentally screened to include only pristine lakes, water depth at the sampling site became more important. Furthermore, when the dataset was geographically scaled to southern Finland, hypolimnetic oxygen conditions became the dominant environmental factor. The results from an intralake dataset from eastern Finland showed that the most important environmental factors controlling midge distribution within a lake basin were river contribution, water depth and submerged vegetation patterns. In addition, the results of the intralake dataset showed that the fossil midge assemblages represent fauna that lived in close proximity to the sampling sites, thus enabling the exploration of within-lake gradients in midge assemblages. Importantly, this within-lake heterogeneity in midge assemblages may have effects on midge-based temperature estimations, because samples taken from the deepest point of a lake basin may infer considerably colder temperatures than expected, as shown by the present test results. Therefore, it is suggested here that the samples in fossil midge studies involving shallow boreal lakes should be taken from the sublittoral, where the assemblages are most representative of the whole lake fauna. Transfer functions between midge assemblages and the environmental forcing factors that were significantly related with the assemblages, including mean air TJul, water depth, hypolimnetic oxygen, stream flow and distance to littoral vegetation, were developed using weighted averaging (WA) and weighted averaging-partial least squares (WA-PLS) techniques, which outperformed all the other tested numerical approaches. Application of the models in downcore studies showed mostly consistent trends. Based on the present results, which agreed with previous studies and historical evidence, the Medieval Climate Anomaly between ca. 800 and 1300 AD in eastern Finland was characterized by warm temperature conditions and dry summers, but probably humid winters. The Little Ice Age (LIA) prevailed in southern Finland from ca. 1550 to 1850 AD, with the coldest conditions occurring at ca. 1700 AD, whereas in eastern Finland the cold conditions prevailed over a longer time period, from ca. 1300 until 1900 AD. The recent climatic warming was clearly represented in all of the temperature reconstructions. In the terms of long-term climatology, the present results provide support for the concept that the North Atlantic Oscillation (NAO) index has a positive correlation with winter precipitation and annual temperature and a negative correlation with summer precipitation in eastern Finland. In general, the results indicate a relatively warm climate with dry summers but snowy winters during the MCA and a cool climate with rainy summers and dry winters during the LIA. The results of the present reconstructions and the forthcoming applications of the models can be used in assessments of long-term environmental dynamics to refine the understanding of past environmental reference conditions and natural variability required by environmental scientists, ecologists and policy makers to make decisions concerning the presently occurring global, regional and local changes. The developed midge-based models for temperature, hypolimnetic oxygen, water depth, littoral vegetation shift and stream flow, presented in this thesis, are open for scientific use on request.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper both documentary and natural proxy data have been used to improve the accuracy of palaeoclimatic knowledge in Finland since the 18th century. Early meteorological observations from Turku (1748-1800) were analyzed first as a potential source of climate variability. The reliability of the calculated mean temperatures was evaluated by comparing them with those of contemporary temperature records from Stockholm, St. Petersburg and Uppsala. The resulting monthly, seasonal and yearly mean temperatures from 1748 to 1800 were compared with the present day mean values (1961-1990): the comparison suggests that the winters of the period 1749-1800 were 0.8 ºC colder than today, while the summers were 0.4 ºC warmer. Over the same period, springs were 0.9 ºC and autumns 0.1 ºC colder than today. Despite their uncertainties when compared with modern meteorological data, early temperature measurements offer direct and daily information about the weather for all months of the year, in contrast with other proxies. Secondly, early meteorological observations from Tornio (1737-1749) and Ylitornio (1792-1838) were used to study the temporal behaviour of the climate-tree growth relationship during the past three centuries in northern Finland. Analyses showed that the correlations between ring widths and mid-summer (July) temperatures did not vary significantly as a function of time. Early (June) and late summer (August) mean temperatures were secondary to mid-summer temperatures in controlling the radial growth. According the dataset used, there was no clear signature of temporally reduced sensitivity of Scots pine ring widths to mid-summer temperatures over the periods of early and modern meteorological observations. Thirdly, plant phenological data with tree-rings from south-west Finland since 1750 were examined as a palaeoclimate indicator. The information from the fragmentary, partly overlapping, partly nonsystematically biased plant phenological records of 14 different phenomena were combined into one continuous time series of phenological indices. The indices were found to be reliable indicators of the February to June temperature variations. In contrast, there was no correlation between the phenological indices and the precipitation data. Moreover, the correlations between the studied tree-rings and spring temperatures varied as a function of time and hence, their use in palaeoclimate reconstruction is questionable. The use of present tree-ring datasets for palaeoclimate purposes may become possible after the application of more sophisticated calibration methods. Climate variability since the 18th century is perhaps best seen in the fourth paper study of the multiproxy spring temperature reconstruction of south-west Finland. With the help of transfer functions, an attempt has been made to utilize both documentary and natural proxies. The reconstruction was verified with statistics showing a high degree of validity between the reconstructed and observed temperatures. According to the proxies and modern meteorological observations from Turku, springs have become warmer and have featured a warming trend since around the 1850s. Over the period of 1750 to around 1850, springs featured larger multidecadal low-frequency variability, as well as a smaller range of annual temperature variations. The coldest springtimes occurred around the 1840s and 1850s and the first decade of the 19th century. Particularly warm periods occurred in the 1760s, 1790s, 1820s, 1930s, 1970s and from 1987 onwards, although in this period cold springs occurred, such as the springs of 1994 and 1996. On the basis of the available material, long-term temperature changes have been related to changes in the atmospheric circulation, such as the North Atlantic Oscillation (February-June).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of my research is to inquire into the essence and activity of God in the legendarium of the English philologist and writer J.R.R. Tolkien (1892-1973). The legendarium, composed of Tolkien’s writings related to Middle-earth, was begun when he created two Elvish languages, Quenya based on Finnish, Sindarin based on Welsh. Tolkien developed his mythology inspired by Germanic myths and The Kalevala. It is a fictional ancient history set in our world. The legendarium is monotheistic: God is called Eru ‘The One’ and Ilúvatar ‘Father of All’. Eru is the same as the Christian God, for Tolkien wanted to keep his tales consistent with his faith. He said his works were Christian by nature, with the religious element absorbed into the story and the symbolism. In The Silmarillion, set in the primeval ages of Middle-earth, the theological aspects are more conspicuous, while in The Lord of the Rings, which brings the stories to an end, they are mostly limited to symbolic references. The legendarium is unified by its realistic outlook on creaturely abilities and hope expressing itself as humbly defiant resistance. ”The possibility of complexity or of distinctions in the nature of Eru” is a part of the legendarium. Eru Ilúvatar is Trinitarian, as per Tolkien’s faith. Without contextual qualifiers, Eru seems to refer to God the Father, like God in the Bible. Being the creator who dwells outside the world is attributed to Him. The Holy Spirit is the only Person of the Trinity bestown with names: the Flame Imperishable and the Secret Fire. When Eru creates the material world with His word, He sends the Flame Imperishable to burn at the heart of the world. The Secret Fire signifies the Creative Power that belongs to God alone, and is a part of Him. The Son, the Word, is not directly mentioned, but according to one writing Eru must step inside the world in order to save it from corruption, yet remain outside it at the same time. The inner structure of the legendarium refers to the need for a future salvation. The creative word of Eru, “Eä! Let these things Be!”, probably has a connection with the Logos in Christianity. Thus we can find three “distinctions” in Eru: a Creator who dwells outside the world, a Sustainer who dwells inside it and a Redeemer who shall step inside it. Some studies of Tolkien have claimed that Eru is distant and remote. This seems to hold water only partially. Ilúvatar, the Father of All, has a special relation with the Eruhíni, His Children, the immortal Elves and the mortal Men. He communicates with them directly only through the Valar, who resemble archangels. Nevertheless, only the Children of Eru can fight against evil, because their tragic fortunes turn evil into good. Even though religious activities are scarce among them, the fundamental faith and ultimate hope of the “Free Peoples” is directed towards Eru. He is present in the drama of history as the “Author of the Story”, who at times also interferes with its course through catastrophes and eucatastrophes, ‘good catastrophes’. Eru brings about a catastrophe when evil would otherwise bring good to an end, and He brings about a eucatasrophe when creaturely strength is not sufficent for victory. Victory over corruption is especially connected with mortal Men, of whom the most (or least) insignificant people are the Hobbits. However, because of the “primeval disaster” (that is, fall) of Mankind, ultimate salvation can only remain open, a hope for the far future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Together with cosmic spherules, interplanetary dust particles and lunar samples returned by Apollo and Luna missions, meteorites are the only source of extraterrestrial material on Earth. The physical properties of meteorites, especially their magnetic susceptibility, bulk and grain density, porosity and paleomagnetic information, have wide applications in planetary research and can reveal information about origin and internal structure of asteroids. Thus, an expanded database of meteorite physical properties was compiled with new measurements done in meteorite collections across Europe using a mobile laboratory facility. However, the scale problem may bring discrepancies in the comparison of asteroid and meteorite properties. Due to inhomogenity, the physical properties of meteorites studied on a centimeter or millimeter scale may differ from those of asteroids determined on kilometer scales. Further difference may arise from shock effects, space and terrestrial weathering and from difference in material properties at various temperatures. Close attention was given to the reliability of the paleomagnetic and paleointensity information in meteorites and the methodology to test for magnetic overprints was prepared and verified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years there has been growing interest in selecting suitable wood raw material to increase end product quality and to increase the efficiency of industrial processes. Genetic background and growing conditions are known to affect properties of growing trees, but only a few parameters reflecting wood quality, such as volume and density can be measured on an industrial scale. Therefore research on cellular level structures of trees grown in different conditions is needed to increase understanding of the growth process of trees leading to desired wood properties. In this work the cellular and cell wall structures of wood were studied. Parameters, such as the mean microfibril angle (MFA), the spiral grain angles, the fibre length, the tracheid cell wall thickness and the cross-sectional shape of the tracheid, were determined as a function of distance from the pith towards the bark and mutual dependencies of these parameters were discussed. Samples from fast-grown trees, which belong to a same clone, grown in fertile soil and also from fertilised trees were measured. It was found that in fast-grown trees the mean MFA decreased more gradually from the pith to the bark than in reference stems. In fast-grown samples cells were shorter, more thin-walled and their cross-sections were rounder than in slower-grown reference trees. Increased growth rate was found to cause an increase in spiral grain variation both within and between annual rings. Furthermore, methods for determination of the mean MFA using x-ray diffraction were evaluated. Several experimental arrangements including the synchrotron radiation based microdiffraction were compared. For evaluation of the data analysis procedures a general form for diffraction conditions in terms of angles describing the fibre orientation and the shape of the cell was derived. The effects of these parameters on the obtained microfibril angles were discussed. The use of symmetrical transmission geometry and tangentially cut samples gave the most reliable MFA values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport plays an important role in the distribution of long-lived gases such as ozone and water vapour in the atmosphere. Understanding of observed variability in these gases as well as prediction of the future changes depends therefore on our knowledge of the relevant atmospheric dynamics. This dissertation studies certain dynamical processes in the stratosphere and upper troposphere which influence the distribution of ozone and water vapour in the atmosphere. The planetary waves that originate in the troposphere drive the stratospheric circulation. They influence both the meridional transport of substances as well as parameters of the polar vortices. In turn, temperatures inside the polar vortices influence abundance of the Polar Stratospheric Clouds (PSC) and therefore the chemical ozone destruction. Wave forcing of the stratospheric circulation is not uniform during winter. The November-December averaged stratospheric eddy heat flux shows a significant anticorrelation with the January-February averaged eddy heat flux in the midlatitude stratosphere and troposphere. These intraseasonal variations are attributable to the internal stratospheric vacillations. In the period 1979-2002, the wave forcing exhibited a negative trend which was confined to the second half of winter only. In the period 1958-2002, area, strength and longevity of the Arctic polar vortices do not exhibit significant long-term changes while the area with temperatures lower than the threshold temperature for PSC formation shows statistically significant increase. However, the Arctic vortex parameters show significant decadal changes which are mirrored in the ozone variability. Monthly ozone tendencies in the Northern Hemisphere show significant correlations (|r|=0.7) with proxies of the stratospheric circulation. In the Antarctic, the springtime vortex in the lower stratosphere shows statistically significant trends in temperature, longevity and strength (but not in area) in the period 1979-2001. Analysis of the ozone and water vapour vertical distributions in the Arctic UTLS shows that layering below and above the tropopause is often associated with poleward Rossby wave-breaking. These observations together with calculations of cross-tropopause fluxes emphasize the importance of poleward Rossby wave breaking for the stratosphere-troposphere exchange in the Arctic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation we study the interaction between Saturn's moon Titan and the magnetospheric plasma and magnetic field. The method of research is a three-dimensional computer simulation model, that is used to simulate this interaction. The simulation model used is a hybrid model. Hybrid models enable individual tracking or tracing of ions and also take into account the particle motion in the propagation of the electromagnetic fields. The hybrid model has been developed at the Finnish Meteorological Institute. This thesis gives a general description of the effects that the solar wind has on Earth and other planets of our solar system. Planetary satellites can also have similar interactions with the solar wind but also with the plasma flows of planetary magnetospheres. Titan is clearly the largest among the satellites of Saturn and also the only known satellite with a dense atmosphere. It is the atmosphere that makes Titan's plasma interaction with the magnetosphere of Saturn so unique. Nevertheless, comparisons with the plasma interactions of other solar system bodies are valuable. Detecting charged plasma particles requires in situ measurements obtainable through scientific spacecraft. The Cassini mission has been one of the most remarkable international efforts in space science. Since 2004 the measurements and images obtained from instruments onboard the Cassini spacecraft have increased the scientific knowledge of Saturn as well as its satellites and magnetosphere in a way no one was probably able to predict. The current level of science on Titan is practically unthinkable without the Cassini mission. Many of the observations by Cassini instrument teams have influenced this research both the direct measurements of Titan as well as observations of its plasma environment. The theoretical principles of the hybrid modelling approach are presented in connection to the broader context of plasma simulations. The developed hybrid model is described in detail: e.g. the way the equations of the hybrid model are solved is shown explicitly. Several simulation techniques, such as the grid structure and various boundary conditions, are discussed in detail as well. The testing and monitoring of simulation runs is presented as an essential routine when running sophisticated and complex models. Several significant improvements of the model, that are in preparation, are also discussed. A main part of this dissertation are four scientific articles based on the results of the Titan model. The Titan model developed during the course of the Ph.D. research has been shown to be an important tool to understand Titan's plasma interaction. One reason for this is that the structures of the magnetic field around Titan are very much three-dimensional. The simulation results give a general picture of the magnetic fields in the vicinity of Titan. The magnetic fine structure of Titan's wake as seen in the simulations seems connected to Alfvén waves an important wave mode in space plasmas. The particle escape from Titan is also a major part of these studies. Our simulations show a bending or turning of Titan's ionotail that we have shown to be a direct result of the basic principles in plasma physics. Furthermore, the ion flux from the magnetosphere of Saturn into Titan's upper atmosphere has been studied. The modelled ion flux has asymmetries that would likely have a large impact in the heating in different parts of Titan's upper atmosphere.