5 resultados para Phytophthora sp.

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Acinetobacter sp. metsäteollisuuden jätevesien biologisessa fosforinpoistossa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human-mediated movement of plants and plant products is now generally accepted to be the primary mode of introduction of plant pathogens. Species of the genus Phytophthora are commonly spread in this way and have caused severe epidemics in silviculture, horticulture as well as natural systems all over the world. The aims of the study were to gather information on the occurrence of Phytophthora spp. in Finnish nurseries, to produce information for risk assessments for these Phytophthora spp. by determining their host ranges and tolerance of cold temperatures, and to establish molecular means for their detection. Phytophthora cactorum was found to persist in natural waterbodies and results suggest that irrigation water might be a source of inoculum in nurseries. In addition to P. cactorum, isolates from ornamental nursery Rhododendron yielded three species new to Finland: P. ramorum, P. plurivora and P. pini. The only species with quarantine status, P. ramorum, was most adapted to growth in cold temperatures and able to persist in the nursery in spite of an annual sanitation protocol. Phytophthora plurivora and the closely related P. pini had more hosts among Nordic tree and plant species than P. ramorum and P. cactorum, and also had higher infectivity rates. All four species survived two weeks in -5 °C , and thus soil survival of these Phytophthoras in Finland is likely under current climatic conditions. The most common tree species in Finnish nurseries, Picea abies, was highly susceptible to P. plurivora and P. pini in pathogenicity trials. In a histological examination of P. plurivora in P. abies shoot tissues, fast necrotrophic growth was observed in nearly all tissues. The production of propagules in P. abies shoot tissue was only weakly indicated. In this study, a PCR DGGE technique was developed for simultaneous detection and identification of Phytophthora spp. It reliably detected Phytophthora in plant tissues and could discriminate most test species as well as indicate instances of multiple-species infections. It proved to be a useful detection and identification tool either applied alone or in concert with traditional isolation culture techniques. All of the introduced species of Phytophthora had properties that promote a high risk of establishment and spread in Finland. It is probable that more pathogens of this genus will be introduced and become established in Finland and other Nordic countries unless efficient phytosanitary control becomes standard practice in the international plant trade.