8 resultados para Phase measurement
em Helda - Digital Repository of University of Helsinki
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
The cross section for jets from b quarks produced with a W boson has been measured in ppbar collision data from 1.9/fb of integrated luminosity recorded by the CDF II detector at the Tevatron. The W+b-jets process poses a significant background in measurements of top quark production and prominent searches for the Higgs boson. We measure a b-jet cross section of 2.74 +- 0.27(stat.) +- 0.42(syst.) pb in association with a single flavor of leptonic W boson decay over a limited kinematic phase space. This measured result cannot be accommodated in several available theoretical predictions.
Resumo:
We present a measurement of the top quark mass with t-tbar dilepton events produced in p-pbar collisions at the Fermilab Tevatron $\sqrt{s}$=1.96 TeV and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9 fb$^{-1}$, are selected as t-tbar candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles ($\phi_{\nu_1},\phi_{\nu_2}$) of neutrinos and reconstruct the top quark mass for each $\phi_{\nu_1},\phi_{\nu_2}$ pair by minimizing a $\chi^2$ function in the t-tbar dilepton hypothesis. We assign $\chi^2$-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t-tbar and background events, and parameterized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of $165.5^{+{3.4}}_{-{3.3}}$(stat.)$\pm 3.1$(syst.) GeV/$c^2$.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
Aims: The aims of this study were 1) to identify and describe health economic studies that have used quality-adjusted life years (QALYs) based on actual measurements of patients' health-related quality of life (HRQoL); 2) to test the feasibility of routine collection of health-related quality of life (HRQoL) data as an indicator of effectiveness of secondary health care; and 3) to establish and compare the cost-utility of three large-volume surgical procedures in a real-world setting in the Helsinki University Central Hospital, a large referral hospital providing secondary and tertiary health-care services for a population of approximately 1.4 million. Patients and methods: So as to identify studies that have used QALYs as an outcome measure, a systematic search of the literature was performed using the Medline, Embase, CINAHL, SCI and Cochrane Library electronic databases. Initial screening of the identified articles involved two reviewers independently reading the abstracts; the full-text articles were also evaluated independently by two reviewers, with a third reviewer used in cases where the two reviewers could not agree a consensus on which articles should be included. The feasibility of routinely evaluating the cost-effectiveness of secondary health care was tested by setting up a system for collecting HRQoL data on approximately 4 900 patients' HRQoL before and after operative treatments performed in the hospital. The HRQoL data used as an indicator of treatment effectiveness was combined with diagnostic and financial indicators routinely collected in the hospital. To compare the cost-effectiveness of three surgical interventions, 712 patients admitted for routine operative treatment completed the 15D HRQoL questionnaire before and also 3-12 months after the operation. QALYs were calculated using the obtained utility data and expected remaining life years of the patients. Direct hospital costs were obtained from the clinical patient administration database of the hospital and a cost-utility analysis was performed from the perspective of the provider of secondary health care services. Main results: The systematic review (Study I) showed that although QALYs gained are considered an important measure of the effectiveness of health care, the number of studies in which QALYs are based on actual measurements of patients' HRQoL is still fairly limited. Of the reviewed full-text articles, only 70 reported QALYs based on actual before after measurements using a valid HRQoL instrument. Collection of simple cost-effectiveness data in secondary health care is feasible and could easily be expanded and performed on a routine basis (Study II). It allows meaningful comparisons between various treatments and provides a means for allocating limited health care resources. The cost per QALY gained was 2 770 for cervical operations and 1 740 for lumbar operations. In cases where surgery was delayed the cost per QALY was doubled (Study III). The cost per QALY ranges between subgroups in cataract surgery (Study IV). The cost per QALY gained was 5 130 for patients having both eyes operated on and 8 210 for patients with only one eye operated on during the 6-month follow-up. In patients whose first eye had been operated on previous to the study period, the mean HRQoL deteriorated after surgery, thus precluding the establishment of the cost per QALY. In arthroplasty patients (Study V) the mean cost per QALY gained in a one-year period was 6 710 for primary hip replacement, 52 270 for revision hip replacement, and 14 000 for primary knee replacement. Conclusions: Although the importance of cost-utility analyses has during recent years been stressed, there are only a limited number of studies in which the evaluation is based on patients own assessment of the treatment effectiveness. Most of the cost-effectiveness and cost-utility analyses are based on modeling that employs expert opinion regarding the outcome of treatment, not on patient-derived assessments. Routine collection of effectiveness information from patients entering treatment in secondary health care turned out to be easy enough and did not, for instance, require additional personnel on the wards in which the study was executed. The mean patient response rate was more than 70 %, suggesting that patients were happy to participate and appreciated the fact that the hospital showed an interest in their well-being even after the actual treatment episode had ended. Spinal surgery leads to a statistically significant and clinically important improvement in HRQoL. The cost per QALY gained was reasonable, at less than half of that observed for instance for hip replacement surgery. However, prolonged waiting for an operation approximately doubled the cost per QALY gained from the surgical intervention. The mean utility gain following routine cataract surgery in a real world setting was relatively small and confined mostly to patients who had had both eyes operated on. The cost of cataract surgery per QALY gained was higher than previously reported and was associated with considerable degree of uncertainty. Hip and knee replacement both improve HRQoL. The cost per QALY gained from knee replacement is two-fold compared to hip replacement. Cost-utility results from the three studied specialties showed that there is great variation in the cost-utility of surgical interventions performed in a real-world setting even when only common, widely accepted interventions are considered. However, the cost per QALY of all the studied interventions, except for revision hip arthroplasty, was well below 50 000, this figure being sometimes cited in the literature as a threshold level for the cost-effectiveness of an intervention. Based on the present study it may be concluded that routine evaluation of the cost-utility of secondary health care is feasible and produces information essential for a rational and balanced allocation of scarce health care resources.
Resumo:
This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first-phase data for covering all inventory units. Various methods were examined for improving the accuracy of the forest estimates. Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial imagery was examined (I), as was the selection of aerial image features for estimating forest attributes (II). Various spatial units were compared for extracting image features in a remote sensing aided forest inventory utilizing very high resolution imagery (III). A number of data sources were combined and different weighting procedures were tested in estimating forest attributes (IV, V). Correction of the spectral properties of aerial images proved to be a straightforward and advantageous method for improving the correlation between the image features and the measured forest attributes. Testing different image features that can be extracted from aerial photographs (and other very high resolution images) showed that the images contain a wealth of relevant information that can be extracted only by utilizing the spatial organization of the image pixel values. Furthermore, careful selection of image features for the inventory task generally gives better results than inputting all extractable features to the estimation procedure. When the spatial units for extracting very high resolution image features were examined, an approach based on image segmentation generally showed advantages compared with a traditional sample plot-based approach. Combining several data sources resulted in more accurate estimates than any of the individual data sources alone. The best combined estimate can be derived by weighting the estimates produced by the individual data sources by the inverse values of their mean square errors. Despite the fact that the plot-level estimation accuracy in two-phase sampling inventory can be improved in many ways, the accuracy of forest estimates based mainly on single-view satellite and aerial imagery is a relatively poor basis for making stand-level management decisions.